

COURSE OVERVIEW DE0967 Wellbore Stability & Geomechanics

to PDHs)

<u>Course Title</u>

Wellbore Stability & Geomechanics

Course Reference

DE0967

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	March 03-07, 2024	
2	September 08-12, 2024	Oryx Meeting Room, DoubleTree By Hilton Doha-Al Sadd, Doha, Qatar
3	October 20-24, 2024	

Course Description

This practical and highly-interactive course includes reallife case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to examine the complexity of wellbore stability/drillability analysis in drilling operations with a view to optimizing well planning, construction and post evaluation procedures. Geomechanical models developed from data acquired during previous drilling operations along with log and seismic information will be introduced. Application of real time well bore stability management system through monitoring of surface and down hole drilling parameters, cuttings inspection, drilling fluids and log data analysis provide necessary tools to prevent avoidable instability issues. It is hoped that by combining drilling logs, offset well data and drilling technologies driven by a proper understanding by participants of the geomechanical profile of prospects, future wells will be successfully constructed in terms of cost savings and minimizing time overruns on drilling projects.

The course discusses the fundamental theories that are critical in current well designs and well instability problems. It looks at the issues of rock properties, subsurface stresses and methods for the prediction of rock behaviour under varying operational conditions. The impact of rock and well instability on well economics is emphasized. Well bore instability has continued to be a major cause of nonproductive time and cost over runs in several fields while drilling, causing delays and well suspension before reaching drilling targets.

DE0967 - Page 1 of 7

The course is suitable for those involved in petroleum related exploration or well planning without detailed geomechanical experience. It introduces the fundamental concepts underpinning any geomechanical study such as rock properties the relationship between stress and strain, sources of stress and the components of a full stress tensor.

Techniques for estimating rock properties and the stress components are presented with related data requirements. Geomechanical implications for the petroleum industry are discussed and methods for assessing geomechanical risks of wellbore instability, fault seal integrity and sand production are addressed.

Course Objectives

Upon successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on wellbore stability-geomechanics
- Define geomechanics and discuss stress, strain and failure
- Differentiate the relationship between stress and strain as well as elastic versus brittle versus plastic deformation
- Explain the principal stress magnitudes, shear stress, normal stress, stress tensor, plate boundary forces and the effect of local structure
- Describe the in situ stress tensor covering reference states, vertical stress, maximum and minimum horizontal stress, andersonian classification, pore pressure stress coupling, rock properties, failure envelopes and tensors with mohr diagrams
- Determine rock mechanical properties from petroleum data including elastic properties and rock strength
- Carryout stress determination from petroleum data comprising of data QC, vertical stress magnitude, stresses around a wellbore, horizontal stress orientation, interpreting image log and calliper data, minimum and maximum horizontal stress magnitude and wireline stress estimates
- Employ petroleum applications for well planning, predictive wellbore stability, structural permeability, sanding and implications for fracture stimulation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of wellbore stability-geomechanics for drilling petroleum engineers and professionals, well engineers, reservoir engineers, production engineers, drillers, drilling managers, operations staff, well planners, geophysicists, petrophysicists, geologists, academic research staff and well completion engineers.

Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

DE0967 - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** * BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0967 - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sigve Hamilton, MSc, BSc, is a Senior Drilling & Petroleum Engineer with over 20 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His specialization widely covers in the areas of Advanced Drilling Operation Management, Drilling Fluid Technology, Directional & Horizontal Drilling, Drilling Optimization & Well Planning, Drilling Operation Management,

Drilling Control & Operation, Drilling & Completion Design, Drilling & Stuck Pipe Prevention, Gas Lift Operations, Gas Lift Design & Technology, Production Technology, Production Logging, Well Logging, Well Test Analysis, Well Testing Procedures & Evaluation, Well Performance & Control, Wellhead Operations, Wellhead Design, Tubing Design & Casing, Well Production Optimization, Well Control & Blowout Prevention, Coiled Tubing Technology, Coring & Core Analysis, Core & Log Integration, Core Logging, Carbonate & Seismic Sequence Stratigraphy, Completion & Casing Design, CO₂ & Injection System, Fracture Characterization & Modelling, PVT Analysis, Fluid Mechanics, Fluid Dynamics, Water Shutoff, Water Injection Technology, Water Flooding, Petroleum Engineering, Petroleum Geology, Petroleum Physics, Petroleum Management, **Petroleum** Exploration, Reservoir Engineering Data & Management, Reservoir Simulation, Reservoir Geophysics, Naturally Fractured Reservoir, Streamline Simulation, Carbonate Rocks & Siliciclastic Rocks, Applied Rock Mechanics, Rock Physics, Sedimentology & Sequence Stratigraphy, Special Core Analysis, Artificial Lift Design, Enhanced Oil Recovery, Subsurface Production Operation, Rig Inspection, Logging, Hydraulic & Pneumatic, Heterogeneity Modelling for Reservoir Characterization, Prosper, 3D Geological Modelling, Property & Heterogeneity Modelling, IRAP RMS Streamlines, Grid Design & Upscaling for Reservoir Simulation and MBAL, Prosper and GAP Software,

During his career life, Mr. Hamilton held significant positions and dedication as the Petroleum Engineer, Drilling Engineer, Petroleum/QHSE Engineer, Reservoir Engineer, Field Manager, Laboratory Engineer, Mudlogging Geologist, Petroleum/Production Engineer Geoscientist. & Consultant. Project Engineer/Risk Advisor, Petroleum Consultant/Advisor, Inspector/Study Leader and Senior Instructor/Lecturer from various companies and universities such as the University of Akureyri (UNAK), Stavanger Offshore Technical School, Akademiet, Peteka, FMC Technologies, Gerson Lehrman Group, Ocean Rig, Oilfield Technology Group, Talisman, IOR Chemco, Geoservices, ResLab and Roxar.

Mr. Hamilton has a **Master's** degree in **Petroleum Engineering** and a **Bachelor's** degree in **Reservoir Engineering** from **The University of Stavanger**, **Norway**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

DE0967 - Page 4 of 7

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	<i>Introduction</i> What is Geomechanics? • Stress, Strain & Failure • Why Should you Care about Geomechanics?	
0930 - 0945	Break	
0945 - 1100	Stress & StrainsThe Relationship Between Stress & Strain •Elastic vs Brittle vs PlasticDeformation •The Principal Stress Magnitudes	
1100 – 1215	Stress & Strains (cont'd) Shear Stress & Normal Stress • Stress Tensor	
1215 - 1230	Break	
1230 - 1420	<i>Stress & Strains (cont'd)</i> <i>Plate Boundary Forces</i> • <i>Effect of Local Structure</i>	
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day One	

Day 2

0730 - 0930	The in Situ Stress Tensor	
	Reference States • Vertical Stress	
0930 - 0945	Break	
0945 - 1100	The in situ Stress Tensor (cont'd)	
	Maximum Horizontal Stress • Minimum Horizontal Stress	
1100 – 1215	The in situ Stress Tensor (cont'd)	
	Andersonian Classification • Pore Pressure Stress Coupling	
1215 – 1230	Break	

DE0967 - Page 5 of 7

1230 - 1420	The in situ Stress Tensor (cont'd)Rock Properties & Failure EnvelopesVisualising Stress Tensors with MohrDiagrams
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 5		
0730 - 0930	Determining Rock Mechanical Properties from Petroleum Data	
	Elastic Properties	
0930 - 0945	Break	
0945 - 1100	Determining Rock Mechanical Properties from Petroleum Data (cont'd)	
	Elastic Properties	
1100 – 1215	Determining Rock Mechanical Properties from Petroleum Data	
	Rock Strength	
1215 – 1230	Break	
1230 – 1420	Determining Rock Mechanical Properties from Petroleum Data (cont'd)	
1230 - 1420	Rock Strength	
1420 - 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

Stress Determination from Petroleum Data0730 - 0930Data QC • Vertical Stress Magnitude • Stresses Around a W Horizontal Stress Orientation0930 - 0945Break	Vellbore •	
Horizontal Stress Orientation 0930 – 0945 Break	Vellbore •	
0930 – 0945 Break		
Stress Determination from Petroleum Data (cont'd)		
0945 – 1100 Interpreting Image log & Calliper Data • Minimum Horizor	ntal Stress	
Magnitude (Hydraulic Fracture Tests Theory & Description)		
Stress Determination from Petroleum Data (cont'd)		
Maximum Horizontal Stress Magnitude (Breakout Occurrence	e & Rock	
1100 – 1215 Strength, Drilling Induced Tensile Fracture Occurrence & Rock	: Strength,	
Frictional Limits, Breakout Width, Stresses around Arbitrarily	y Inclined	
Wellbores)	ŕ	
1215 – 1230 Break	Break	
Stress Determination from Petroleum Data (cont'd)		
1230 – 1420 Wireline Stress Estimates (1D Geomechanical Models) (Roch	k Physics,	
Geological Environment)	c	
Recap		
1420 – 1430 Using this Course Overview, the Instructor(s) will Brief Participant	s about the	
1420 – 1450 Topics that were Discussed Today and Advise Them of the To	pics to be	
Discussed Tomorrow	-	
1430 Lunch & End of Day Four		

DE0967 - Page 6 of 7

Day 5

0730 – 0930	Petroleum Applications	
	Well Planning • Predictive Wellbore Stability (Generic WBS, Trajectory	
	WBS, Drilling Optimisation)	
0930 - 0945	Break	
0945 - 1100	Petroleum Applications (cont'd)	
	Structural Permeability (Fault Seal Analysis, Fracture Permeability)	
1100 – 1215	Petroleum Applications (cont'd)	
	Sanding	
1215 – 1230	Break	
1220 1245	Petroleum Applications (cont'd)	
1230 – 1345	Implications for Fracture Stimulation	
1345 - 1400	Course Conclusion	
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>	
	Course Topics that were Covered During the Course	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

DE0967 - Page 7 of 7

