

COURSE OVERVIEW PE0390 Distillation Design, Operation, Control & Troubleshooting

Course Title

Distillation Design, Operation, Control & Troubleshooting

Course Date/Venue

January 28-February 01, 2024/Royal Club Meeting Room, Radisson Blu Hotel, Dubai Deira Creek, Dubai, UAE

Course Reference PE0390

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

The Distillation Process is used in many industries to separate mixtures into components. It is defined as a process in which a liquid or vapor mixture of two or more substances is separated into its component fractions of desired purity by the application and removal of heat. The application and removal of heat makes the distillation process energy intensive as it consuming up to 50 percent of a refinery's operating costs due to intense coolina cvcles. heating and Having accurate measurements to feed the control system is critical for energy efficient, safe and reliable operation.

Improving distillation columns has always been challenging as problems can occur when operators and engineers have insufficient information about operating conditions. Failing to properly monitors and control process variables can result in decreased product quality and throughput, increased energy costs and unsafe operations that put employees and capital equipment at risk.

PE0390 - Page 1 of 20

This course is designed to provide delegates with a detailed and up-to-date knowledge on the operation, design and troubleshooting of distillation process. It covers distillation technology; different distillation methods; and distillation process that involve normal operation of bubble plate, vapor velocity and velocity distribution.

The course will also discuss the factors influencing plate efficiency; the scope of distillation column including flash stages, process design basic and reflux ratio; how tray works; the various types and function of reboilers; features and use of condensers in the operation of distillation columns; instrumentation and control application; the importance of steam stripper and its efficiency; the purpose of pumparound; as well as pumparound heat removal, vapor flow and fractionation.

At the completion of the course, participants will be able to operate the vacuum system; explain the functional and structural efficiency of packed towers; employ distillation column packing as well as tray columns; recognize the guidelines and methods on how to determine the column diameter; and troubleshoot various distillation column problems.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Operate, control and troubleshoot distillation process in a professional manner
- Apply and gain an in-depth knowledge on distillation technology
- Identify the different distillation methods and implement distillation process involving the normal operation of bubble plate, vapor velocity and velocity distribution
- Determine the factors influencing plate efficiency and explain the scope of distillation column including flash stages, process design basic and reflux ratio
- Demonstrate how tray works and explain the types & function of reboilers
- Discuss the features & use of condensers in the operation of distillation columns and apply instrumentation & control
- Enumerate the importance of steam stripper and emphasize its efficiency
- Discuss the purpose of pump around and become familiar with pump around heat removal, vapor flow and fractionation
- Demonstrate the operation of the vacuum system and explain the functional and structural efficiency of packed towers
- Employ distillation column packing as well as tray columns and recognize the guidelines & methods on how to determine the column diameter
- Troubleshoot various distillation column problems

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

PE0390 - Page 2 of 20

Who Should Attend

This course provides an overview of all significant aspects and considerations of distillation process for those who are involved in the operation, control and troubleshooting of such system. Process engineers, production engineers, operations engineers, maintenance engineers and other technical staff will definitely benefit from the technical and operational aspects of the course.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0390 - Page 3 of 20

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

*** *BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0390 - Page 4 of 20

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, BSc, is a Senior Mechanical & Petroleum Engineer with over 35 years of integrated industrial and academic experience as a University Professor. His specialization widely covers in the areas of Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible

Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer and Senior Instructor/Lecturer from various companies and universities such as the Cairo University, Helwan University, British University in Egypt, Banha University and Agiba Petroleum Company.

Dr. Hesham has a **PhD** and **Master** degree in **Mechanical Power Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is a member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE0390 - Page 5 of 20

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 28 th of January 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Theory of Distillation
0830 - 0930	Introduction • Boiling Point Diagram • Roault's Law • Vapor – Liquid
	Equilibrium • Exercise • Solution • Azeotropic Mixture
0930 - 0945	Break
	Distillation Methods & Definition
0945 – 1100	Flash Distillation • Steam Distillation • Rectification • Combination
0945 - 1100	Rectification & Stripping • Exercise • Solution • Distillation Basic
	Definition
	Distillation Process
1100 – 1230	Normal Operation of Bubble Plate • Vapor Velocity • Velocity Distribution
	Factors Influencing Plate Efficiency Sieve-plate Towers
1230 - 1245	Break
	Distillation Column
1245 - 1330	Flash Stages • Process Design Basic • Reflux Ratio • Minimum Reflux
	Ratio • Minimum Number of Plates • Optimum Reflux
	How Trays Work
1330 - 1420	Down Common Backup & Flooding • Dumping and Weeping • Optimizing
	Tower Pressure
	Recap
1420 -1430	Using this Course Overview, the instructor(s)will Brief Participants about the
1420 1430	Topics that were Discussed Today & Advice Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 29 th of January 2024
0730 - 0930	Reboilers Function
0730 - 0930	<i>Reboilers Function</i> • <i>The Reboiler</i> • <i>Heat-Balance Calculations</i>
0930 - 0945	Break
	Types of Reboiler
0945 - 1100	Thermosyphon, Gravity Feed & Forced • Thermosyphon Reboilers • Forced
	Circulation Reboilers • Kettle Reboilers • Don't Forget Fouling
	Condensers
1100 – 1230	Flooded Condenser Control • Subcooling, Vapor Binding, & Condensation •
	Condensation and Condenser Design • Pressure Control
1230 - 1245	Break

PE0390 - Page 6 of 20

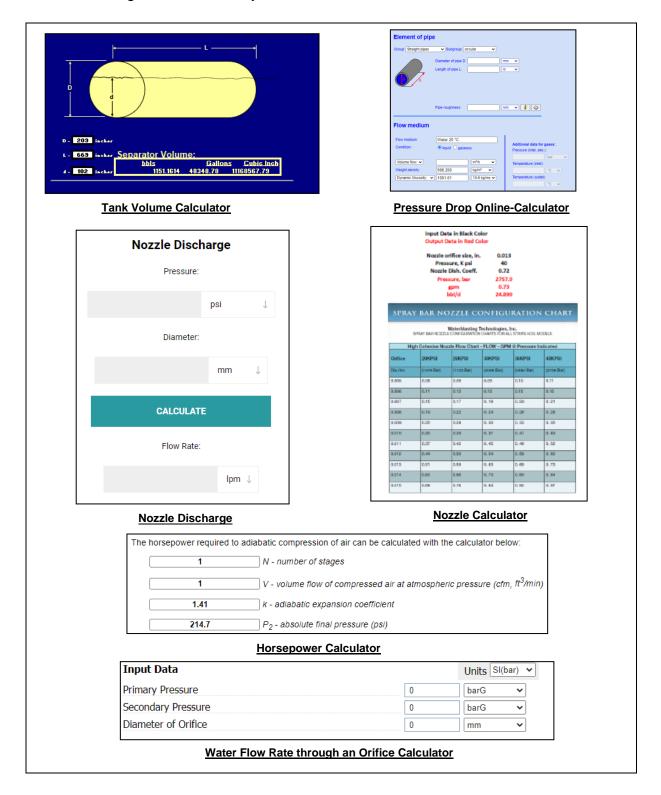
1245 – 1330	InstrumentationLevels, Pressures, Flows & Temperatures • Pressure Control • Flow Control• Level Control • Crude Tower Kerosene Side Stream Control • CascadeLevel - Flow Control
1330 - 1420	<i>Steam Stripper</i> <i>Heat of Evaporation</i> • <i>Stripper Efficiency</i>
1420 - 1430	Recap Using this Course Overview, the instructor(s)will Brief Participants about the Topics that were Discussed Today & Advice Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 30 th of January 2024
0730 - 0930	PumparoundClosing the Tower Enthalphy BalancePumparound Heat RemovalPurpose of a PumparoundDo Pumparounds Fractionate?• Vapor Flow• Fractionation
0930 - 0945	Break
0945 - 1100	<i>Vacuum System</i> <i>Theory of Operation</i> • <i>Measuring Deep Vacuums</i>
1100 - 1230	Packed Towers How Packed Towers Work Maintaining Functional & Structural Efficiency in Packed Towers
1230 - 1245	Break
1245 – 1420	Distillation Column PackingTray Columns – Packings • Tray Columns – Type of Packings • TrayColumns – Packings Correlations • Comparison Trays versus Packing •Randomly Packed Towers Sizing • Determine the Column Diameter •Randomly Packed Towers Column Height • Randomly Packed TowersPressure Drop Correlation
1420 - 1430	Recap Using this Course Overview, the instructor(s)will Brief Participants about the Topics that were Discussed Today & Advice Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 31 st of January 2024
0730 - 0930	Inspection, Troubleshooting & Case Studies
0750 - 0950	<i>Tray Deck Levelness</i> • <i>Loss of Downcomer Seal due to Leaks</i>
0930 - 0945	Break
0945 – 1100	Inspection, Troubleshooting & Case Studies (cont'd)
0943 - 1100	Effect of Missing Caps • Repairing Loose Tray Panels
1100 – 1230	Inspection, Troubleshooting & Case Studies (cont'd)
1100 - 1230	Improper Downcomer Clearance • Inlet Weirs
1230 – 1245	Break
1245 – 1420	Inspection, Troubleshooting & Case Studies (cont'd)
1243 - 1420	Seal Pans
1420 - 1430	Recap
1430	Lunch & End of Day Four

PE0390 - Page 7 of 20

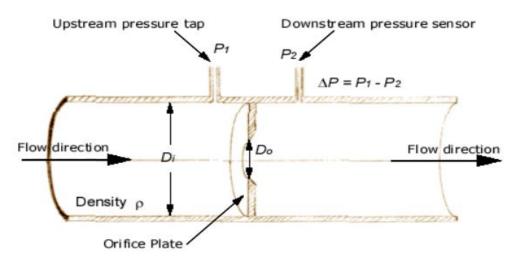
Day 5:	Thursday, 01 st of February 2024
0730 - 0930	Inspection, Troubleshooting & Case Studies (cont'd)
0730 - 0930	Drain Holes • Vortex Breakers
0930 - 0945	Break
0945 – 1100	Inspection, Troubleshooting & Case Studies (cont'd)
0945 - 1100	Chimney Tray Leakage
1100 – 1230	Inspection, Troubleshooting & Case Studies (cont'd)
1100 - 1250	Shear Clips
1230 – 1245	Break
1245 - 1345	Inspection, Troubleshooting & Case Studies (cont'd)
1243 - 1543	Bubble-Cap Trays • Final Inspection
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course


PE0390 - Page 8 of 20

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator.

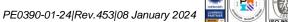
PE0390 - Page 9 of 20


Dil Equivalent Enter data in given fields and click on Calculate for resultant corrosion rate.	<pre>iii Equivalent iii Equivalent i</pre>		
<form></form>	<form></form>	Convert Cubic Feet Of Natural Gas to Barrels Of	Corrosion Rate Calculator
Line of the second sec		On Equivalent	Enter data in given fields and click on Calculate for resultant corrosion rate.
<form></form>			Weight Loss Density
<form></form>			microgm V
			mm2 V
Letter of lifetand site	Acte of the function of the		
		Cubic Feet Of Natural Gas Barrels Of Oil Equivalent (bboe)	
Image: Numerical State St	NURCONICS CALCULATOR Image: A logic of the second of th	0	
Image: Numerical State St	NURCONICS CALCULATOR Image: A logic of the second of th	Cubic Feet Calculator	Corrosion Rate Calculator
improve the transmission of tra	Figure 1 Image: Ima	<u></u>	Consisting Rate Calculator
improve the transmission of tra	Figure 1 Image: Ima		
Image: A decay of a	Herein the		
<image/>		nan fan kan gen Op Annen Sonen V August an Sonen an Sonen	Pressure at A (absolute): 100 kPa 💌
Image: bit is the i			Average fluid velocity in pipe, V. 1
Image: Section of the sec	Image: state in the	Minimum pipe diameter calculator	Pipe diameter, D: 10 cm ¥
Image: the two part of the two part of	Image: with fluids others than straight water. Image: with fluids others	man file for jun	Pipe relative roughness, e/2: 0 m/m ¥
Image: the state of the state is the state of the state is the state of the state is	Image: the two process of the two proces		Pipe length from A to B, L: 50 m 👻
Image: bit is of the term of term o	Image: the flow relation of the weak of the flow relation of the flow relation of the flow relation of the weak of the flow relation of the weak of the flow relation of the flow r	icesang Two	Elevation gain from A to B, JZ: 0 m 💌
Image: transmission of the transmission of transmissic of transmission of transmissic of transmission of transmissi	Pud viscosity (dynamic), µ Image: Control in the state of the	Water flow rate calculator	Fluid density, p: 1 ko1 ¥
EVALUATE IN A CONTRACT OF	Interpretendent of the series of the ser	Type Calendre (strong) Index where see (strong) Index 0 = 0	Fluid viscosity (dynamic) u: 1 CP ¥
BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F *F	BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F -*F		- use uncount following by
Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM GPM GPM GPM	Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Inlet Water Temperature To Process Outlet Water Temperature From Process GPM "F "F		
example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM	example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM GPM GPM GPM GPM		
BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM GPM 'F 'F 'F	BTU = Flow Rate In GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM GPM F	example, allow your process water to fill a 5-gallon co	ontainer. Accurately measure the water temperature entering and
changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Gallons Per Minute GPM GPM FF GPM FF	changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate In Galions Per Minute GPM GPM F	Formula	
Water Flow Rate In Gallons Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F *F	Water Flow Rate In Galions Per Minute Inlet Water Temperature To Process Outlet Water Temperature From Process GPM *F		eaving Process - Temperature Entering Process) x 500.4*Formula
GPM *F	GPM *F	BTU Calculator for Weighed Water Test	
		Water Flow Rate in Galions Per Minute Inlet Water Ten	nperature To Process Outlet Water Temperature From Process
BTU Calculator	BTU Calculator	GPM	*F +F
BTU Calculator	BTU Calculator		
		BTU Cale	culator

PE0390 - Page 10 of 20

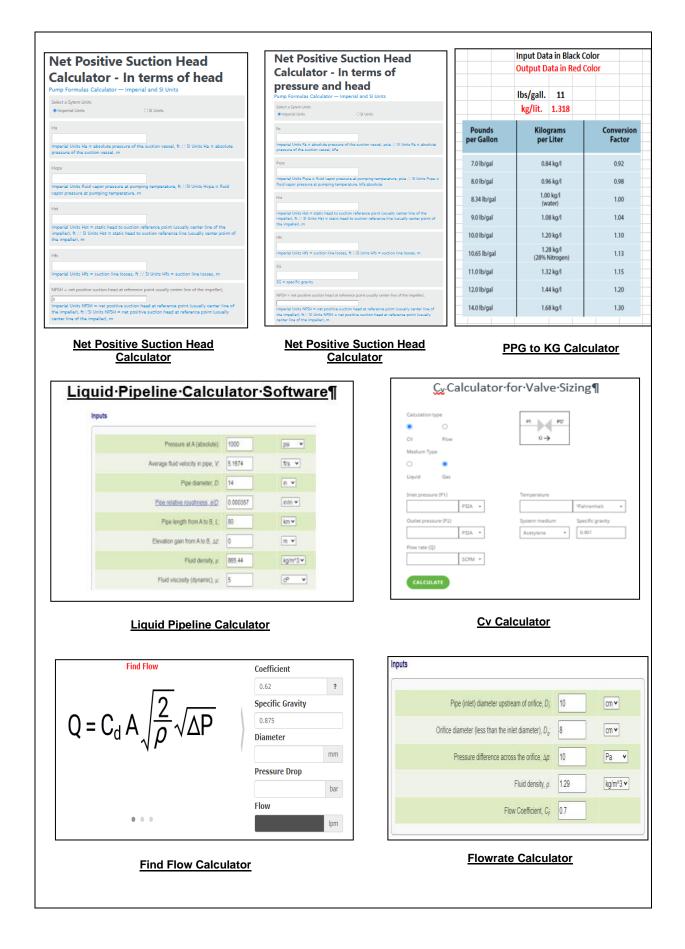
Inputs

Pipe (inlet) diameter upstream of orifice, <i>D</i> _i :	8	in 🗸
Orifice diameter (less than the inlet diameter), D_o :	3	in 🗸
Pressure difference across the orifice, Δp :	20	psi 🗸
Fluid density, ρ:	835	kg/m^3 ✓
Flow Coefficient, C _f :	0.82	


Answers

Velocity at the inlet, V_i :	2.10 m/s	m/s 🗸
Volumetric Flowrate, Q:	1080 gpm	gpm 🗸
Mass Flowrate:	56.7 kg/s	kg/s ✔

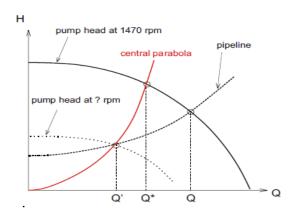
Flow Rate through an Orifice or Valve Calculator



PE0390 - Page 11 of 20

PE0390 - Page 12 of 20

	Coefficient.of.Dischar	ge·Calculator¶	
	Calculate discharge coefficient		
	using	hydraulic head 💌	
	Water level	H Q	
	Flow parameters		
	Diameter (d)	<u>m.*</u>	
	Area (A)	<u>m² •</u>	
	Head (H)	<u>m.*</u>	
	Actual discharge (Q)	<u>m³/s ×</u>	
Convert hor	<u>Coefficient Discharge</u> sepower hour to gallon [U.		our
		1	
		gallon [U.S.] o	f diesel
Convert		gallon [U.S.] o	f diesel


PE0390 - Page 13 of 20

Liquid Pumpin	g Program	Output Results	
Input Data		Flow Velocity, ft/s	5.0154
		Erosion Velocity, ft/s	13.440
API	28	E/I.D.	0.001786
c.P.	5	sp.gr.	0.8871
1000 bbl/d	3.3	Re	19290.3
Length, km	2.4384	F	0.02987
I.D., in.	2.800	Hf, psi	153.67
	0.005	Hf, m water	108.17
Rough. (E), in.		Total Pump Dich. psi	276.68
Difference in elev., m	50	TDP, psi	196.68
Destination press., psi	60	Hydr. Power, HP	16.99
Pump Suc. psi	80	Hydr. Power, Kw	12.67
Overall Pump Eff., %	65	Shaft Power, HP	18.88
Motor Eff., %	90	Shaft Power, Kw	14.083
		Nama Plate Motor HP	23.60
Motor Loading %	80	Nama Plate Motor Kw	17.60

A pump running at 1470[rpm] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} =$ $20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the central parabola (see figure), given by $H_{ap} = a Q^2$.

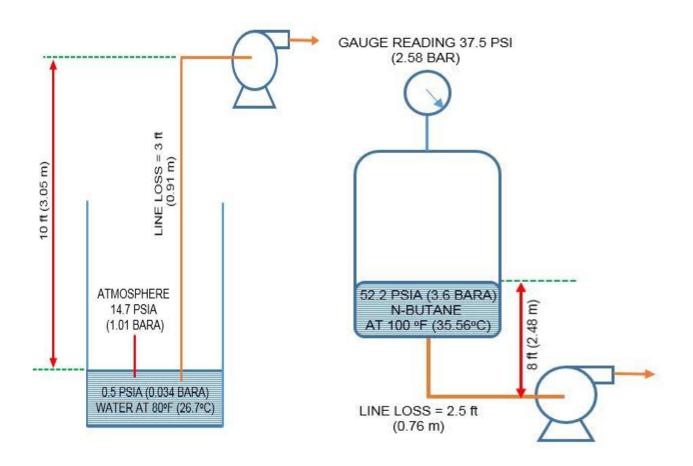
However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81[m]$. Thus, the parameter of the affine parabola is $a = H'/Q'^2 =$ 9125.

 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*) =$ $H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.

Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation

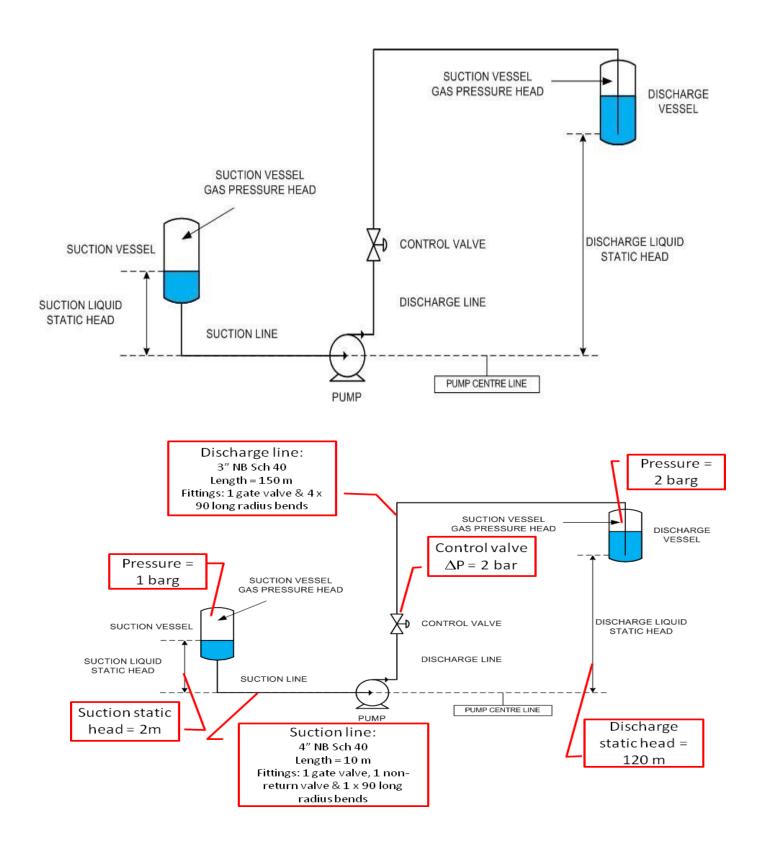

$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

PE0390 - Page 14 of 20

NPSHA of pump – suction lift

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

NPSHA = Hatmp.+/- Hs – Hf – Hvap.


https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true http://www.pressure-drop.com/Online-Calculator/index.html

NPSH Calculations		Output Results	
Input Data		Flow Velocity, ft/s	2.6620
API	36	=E/I.D.	0.001671
c.P.	3	sp.gr.	0.8448
Vapor pressure, psi	10	Re	17363.9
Atmp. Pressure, psi	14.7		
Height above pump, ft	20	F	0.0302
1000 bbl/d	2.0	Hf, psi	0.048
Length, km	0.003	Hf, ft water	0.111
I.D., in.	2.992	NPSHA, ft oil	32.72
Rough. (E), in.	0.005	NPSHA, ft water	27.64

PE0390 - Page 16 of 20

Calculator

PUMP DETAILS

Pump tag number Suction vessel tag number Discharge vessel tag number		P-001 V-001 V-002
Barometric pressure NPSH available margin Pump efficiency	P _{atm} H _{margin} γ	1.013 bara 0 m 70%
FLUID PROPERTIES		
Fluid Phase Flowrate Density Viscosity Vapour pressure	m ρ μ Ρ _{ναρ}	Water Liquid 30000 kg/hr 998 kg/m3 1 cP 0.023 bara
VESSEL GAS PRESSURES		
Suction vessel gas pressure Discharge vessel gas pressure	P _{suc_vessel} P _{dis_vessel}	1 barg 2 barg
STATIC HEADS		
Suction static head Discharge static head	H _{sucstatic_head} H _{disstatic_head}	2 m 120 m

PIPELINES

		Suction Line	Discharge Line	
Pipe nominal diameter		4 🗸	3 🗸	inch
Pipe schedule		Sch 40 💙	Sch 40 🛩	
Pipe internal diameter	d	102.26	77.92	mm
Pipe length	L	10	150	m
Absolute roughness	e	0.046	0.046	mm

OUTPUTS

Volumetric flow rate	Q	30.060 m3/hr		
		Suction Line	Discharge Line]
Relative roughness	e:d	0.00045	0.00059]
Flow area	Α	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170	
Flow regime		turbulent	turbulent]
Friction factor	f	0.02011	0.02010	
Pipe velocity head loss	K _{pipe}	1.966	38.695	
Fittings total velocity head loss	K _{fittings}	1.724	2.152]
Frictional pressure loss	ΔP _{friction}	0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

Pump suction pressure	Psuction	2.19 bara
Pump suction head	H _{suction}	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head	H _{discharge}	157.16 m
Net positive suction pressure available	P _{NPSHA}	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure Pump total differential head Pump absorbed power	∆P _{pump} H _{pump} E	13.20 bar 134.79 m 15.74 kW

 PE0390 - Page 17 of 20

 PE0390-01-24|Rev.453|08 January 2024

<u>Results of above calculations may be confirmed through either of followinglinks:</u> https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

Power Calculations:

https://inventory.powerzone.com/resources/centrifugal-pumppowercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20FT%3A pu%3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d_1363.html

Input Data		Output Results	
T1, F	60		
к	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1	•	
No. of Comp. stages	3	Gas, <mark>kg</mark> /s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85	Total Demoined UD	10701.07
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
input Data		Mega Watt	0.220
Million DTU/hr	0.75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
API	10.0	gallon/hr.	1498.4
Ari	10.0	Lit./min.	94.5
Creatific Heat RTU/lb/F	1 00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Delte Temp - F	60	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
Heater Fff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., %	100	Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchangertubeside-pressure-drop-calculation/

PE0390 - Page 18 of 20 PE0390-01-24|Rev.453|08 January 2024

<u>Input Data</u>		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water Inlet pressure = 4 barg Inlet temperature = 50°C Outlet temperature = 30°C Tubeside flowrate = 50000 kg/hr Number of tubes = 25 Tube ID (internal diameter) = 1 inch Tube length = 3.5 m

Total volumetric flow = 50000 kg/hr \div 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 \div 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

Pressure loss across a single tube (ΔP/L) = 6.17 bar/km

SINGLE PHASEFLOW INPUTS		
W – <u>Mass</u> flow capacity	2000	kg/h
$\rho - \underline{Density}$ of fluid	988	kg/m ³
$\mu - \underline{\text{Viscosity}}$ of fluid (either liquid or gas)	0.53	cP
PIPE SPECIFICATIONS		
e – Effective roughness of the pipe	0.045	mm
d – Nominal diameter of the pipe	1	inches
sch – <u>pipe schedule</u>	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	m ³ /hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m

Tubeside pressure drop (ΔP) = 6.17 × 3.5 / 1000 = 0.0216 bar

PE0390 - Page 19 of 20 PE0390-01-24|Rev.453|08 January 2024

Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar). The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside <u>mass</u> flow	50000	kg/hr
Tubeside Density	988	kg/m ³
Tubeside Viscosity	0.53	cP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Course Coordinator Kamel Ghanem, Tel: +971 2 30 91 714, Email: <u>kamel@haward.org</u>

PE0390 - Page 20 of 20

