

COURSE OVERVIEW PE0127 Operations Abnormalities & Plant Upset

<u>Course Title</u> Operations Abnormalities & Plant Upset

Course Date/Venue

March 03-07, 2024/Tunis 2 Meeting Room, Movenpick Hotel Apartments Downtown Dubai, Dubai, UAE

Course Reference PE0127

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Managing Manpower effectively and assess risk properly during plant upset are key effective factors when reacting with incidents. Incidents may start minor and become major by wrong reaction and wrong decisions. The aim of this course is to make everybody involved in the operations know exactly what to do. The incident itself may cause a certain loss, but with wrong reaction it became a massive Understanding operation. effective loss. emergency/contingency plan, rules of each one within emergency plan and makes emergency tools ready and in operational condition are the main aims of this course. One approach to overcome any incident development is to prepare yourself and emergency team to treat incidents situation professionally.

Upon review of several incidents, two common causes were identified that contributed to those incidents. The causes are improper management of manpower during upset conditions and improper risk assessment of activities to be executed or stop doing. However, on close examination the trained emergency team and correct managing of the incident besides using correct emergency tools will minimize the loss and accidents consequences.

PE0127 - Page 1 of 18

Effective training is the necessary foundation for the successful implementation of optimum emergency managing condition and optimum consequences minimizing. This course will train participants on managing risk & manpower during plant upset to save lives, assets and company reputations.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Manage manpower effectively and assess risk properly during the abnormalities of the operations and plant upset
- Assess staffing level in abnormal situations and distribute manpower during plant upset conditions
- Manage shift teams, assess risk of non-routine activities and manage operational • crisis
- Identify risks in the process and describe the roles, responsibilities and procedures in emergency management
- Use the risk assessment process and have enough skills in monitoring and auditing the emergency tools
- Recognize the training requirements for process emergency handling including • emergency team building
- Discuss the various skills that will be acquired in controlling emergency management using different scenarios and matrix
- Identify the common mistakes during emergencies and employ the preventive measures

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of operations abnormalities and plant upset for superintendents, supervisors and foremen in various departments of process plants (production, operations, maintenance, utility, etc.). Further, the course is suitable for emergency teams, managers, supervisors and other technical staff.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE0127 - Page 2 of 18

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET -USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0127 - Page 3 of 18

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, PgDip, BSc, is a Senior Process & Petroleum Engineer with 40 years of integrated experience within the Oil & Gas industries. His specialization widely covers in the areas of Artificial Lift System, Artificial Lift Methods, Petroleum Economics, Petroleum Refinery Processing, Refinery Material Balance Calculation, Refinery Gas Treating, Asset Operational Integrity, Drilling Operations, Drilling Rig, Bits & BHA, Mud Pumps, Mud logging Services, Wireline & LWD Sensors, Casing & Cementing Operation, & Workover Operations, Petroleum Completion Engineering, Production Optimization, Well Completion, Rig & Rigless Workover,

Advanced PVT & EOS Characterization, PVT/Fluid Characterization/EOS, Advanced Phase Behaviour & EOS Fluid Characterization, PVT Properties of Reservoir Fluids, Directional Drilling Fundamentals, Application & Limitation, Horizontal & Multilateral Wells (Analysis & Design), Directional, Horizontal & Multilateral Drilling, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Root Cause Analysis Study, Root Cause Analysis Techniques & Methodologies, Process Hazard Analysis (PHA), Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Petroleum Engineer from Agiba Company and Engineering Consultant/Instructor for various Oil & Gas companies as well as a Senior Instructor/Lecturer for PhD, Master & BSc degree students from various universities such as the Cairo University, Helwan University, British University in Egypt, Banha University.

Dr. Hesham has PhD and Master degrees as well as Post Graduate Diploma in Mechanical Power Engineering and a Bachelor degree in Petroleum Engineering. Further, he is a Certified Instructor/Trainer and a Peer Reviewer. Dr. Hesham is an active member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE0127 - Page 4 of 18

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:


Day 1:	Sunday, 03 rd of March 2024
0730 -0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction
0930 - 0945	Break
0945 - 1100	Understanding Operational Principles & Why Plants Get Upset
1100 – 1230	Roles & Responsibilities
1230 - 1245	Break
1245 - 1420	Emergency Team Buildings & Responsibilities of Each Member -
1243 - 1420	Case Study
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Monday 04 th of March 2024
0730 - 0900	How Incidents Develop & Common Reasons
0900 - 0915	Break
0915 – 1100	Review of Several Incidents
	Two Common Causes were Identified that Contributed to those Incidents
1100 – 1230	Improper Management of Manpower During Upset Conditions
1230 – 1245	Break
1245 – 1420	Improper Management of Manpower During Upset Conditions
1245 - 1420	(cont'd)
1420 – 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Tuesday, 05 th of March 2024	
0730 - 0930	Root Cause Analysis (RCA)	
0930 - 0945	Break	

PE0127 - Page 5 of 18

0945 – 1100	Risk Register
1100 – 1215	Incidents Development Scenarios – Discussion
1215 – 1230	Break
1230 – 1420	Incidents Development Scenarios – Discussion (cont'd)
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Wednesday, 06 th of March 2024
0730 - 0930	Emergency Team Building & Improper Management of Manpower
0750 - 0950	During Upset Conditions
0930 - 0945	Break
0945 - 1100 Improper Risk Assessment of Operation Conditions I	Improper Risk Assessment of Operation Conditions During Plant
0945 - 1100	Upset
1100 – 1215	Risk Assessment & Risk Evaluation
1100 - 1213	Risk Matrix
1215 – 1230	Break
1230 – 1420	Recognizing Key Points & Controlling Elements in Different Process
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 07 th of March 2024
0730 - 0930	Building Successful Emergency Team & Each One Roles &
0730 - 0930	Responsibilities
0930 - 0945	Break
0945 – 1100	Closing Gaps & Correcting Scenarios
1100 – 1215	Closing Gaps & Correcting Scenarios (cont'd)
1215 – 1230	Break
1230 - 1345	Case Study & Discussion
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

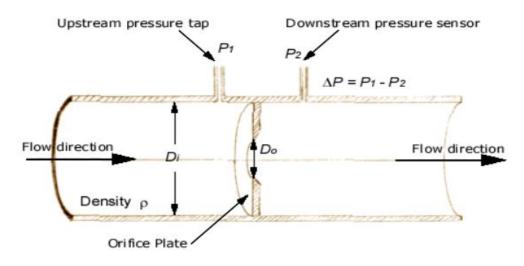
PE0127 - Page 6 of 18

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator.

incher Separator Volume:	Constant of tiple 0
bbls <u>Gallons Cubic Inch</u> incher 1151.1614 48348.78 11168567.79	Volume floor w (m/h bits temperature (size) Weight density 996.206 (spin* w) 0°
Tank Volume Calculator Nozzle Discharge	Pressure Drop Online-Calculato
Pressure:	Pressure, K pi 40 Nozale Dish. Coeff. 0.72 Pressure, bar 2757.9 gpm 0.73 bibl/d 24.999
psi ↓ Diameter:	SPRAY BAR NOZZLE CONFIGURATION CHAR Winnlaying Technologies, Inc. Stray bar hear hear softwards overts for all strape hog uccess
mm ↓	High Cohesive Mozzle Prov Chart - FLOM - GPM 0 Pressure Instanted Orifice 20KPGI 20KPGI 30KPGI 20KPGI 40KPGI 40KPGI Daviss (12% Bar) 1728 Bar) (12% Bar) (12% Bar) (12% Bar) (12% Bar) 10% Bar) 10% Bar) 10% Bar) 0.15 0.17 8.15 0.800 0.01 0.19 0.15 0.15 0.15 0.15 0.15 0.15
CALCULATE	9.307 0.15 0.17 0.18 0.20 0.24 9.306 0.19 0.22 0.24 0.26 0.28 9.306 0.55 0.38 0.30 0.35 9.35 9.010 0.50 0.38 0.37 0.41 9.45
Flow Rate:	0.011 0.57 0.42 0.45 0.49 0.52 0.012 0.44 0.50 0.54 0.59 0.80 0.013 0.51 0.59 0.48 0.49 0.73 0.014 0.60 0.86 0.73 0.60 0.84
Nozzle Discharge	Nozzle Calculator
1.41 K - adiabatic expansion 214.7 P2 - absolute final	ges compressed air at atmospheric pressure (cfm, ft ³ /min) nsion coefficient pressure (psi)
Horsepower C	
Input Data	Units SI(bar)
Primary Pressure Secondary Pressure	0 barG V
Diameter of Orifice	0 barG V

PE0127 - Page 7 of 18


onvert Cubic Feet Of Natural Gas to Barrels Of il Equivalent	Corrosion Rate Calculator Enter data in given fields and click on Calculate for resultant corrosion rate.
	Weight Loss Density
	Area Time
	Area Inne
	millisec V
	Calculate
ubic Feet Of Natural Gas Barrels Of Oil Equivalent (bboe)	Result: Corrosion Rate in mpy V
0	
Cubic Feet Calculator	Corrosion Rate Calculator
HYDRONICS CALCULATOR	Pipe·Pressure·Loss·Calculator¶
Anno Frank May gan Pape de Annos Solonis Va	Pressure at A (absolute): 100 kPa 💌
	Average fluid velocity in pipe, V. 1
Mnimum pipe dameter calculator	Pipe diameter, D: 10 cm v
Called Fais Mary game game game game game game game game	Pipe relative roughness, etc. 0 m/m 💌
C - Contraction Contraction Contraction	Pipe length from A to B, L: 50 m 💌
Water flow rate calculator	Elevation gain from A to B, Δz: 0 m 💌
	Fluid density, p: 1 kg1 ¥
Page Standard (Across)	
Ngo Davaran (Kong) Ngo Davaran (Kong) De De De De De De De De De De De De De	Fluid viscosity (dynamic), µ: 1 CP v
Hydronics Calculator BTU-Calculator-&-BTU-Formulas-fo Weighed Water Test	Pipe Pressure Loss Calculator
Hydronics Calculator BTU·Calculator·&·BTU·Formulas·fo Weighed Water Test Measure the flow of water through your process by the example, allow your process water to fill a 5-gallon of exiting your process. Use this formula to calculate B	Pipe Pressure Loss Calculator
Hydronics Calculator BTU-Calculator-&-BTU-Formulas-fo Weighed Water Test Measure the flow of water through your process by the example, allow your process water to fill a 5-gallon of exiting your process. Use this formula to calculate B Formula	Pipe Pressure Loss Calculator
Hydronics Calculator BTU-Calculator-&-BTU-Formulas-fe Weighed Water Test Weighed Water Test Measure the flow of water through your process by the example, allow your process water to fill a 5-gallon of exiting your process. Use this formula to calculate B Formula BTU = Flow Rate in GPM (of water) x (Temperature L changes with fluids others than straight water. BTU Calculator for Weighed Water Test	Dr-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume container. For container. Accurately measure the water temperature entering and ITU cooling required: Leaving Process - Temperature Entering Process) x 500.4*Formula
Hydronics Calculator BTU-Calculator-&-BTU-Formulas-fe Weighed Water Test Weighed Water Test Measure the flow of water through your process by the example, allow your process water to fill a 5-gallon of exiting your process. Use this formula to calculate B Formula BTU = Flow Rate in GPM (of water) x (Temperature L changes with fluids others than straight water. BTU Calculator for Weighed Water Test	Pipe Pressure Loss Calculator Or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume container. For container. Accurately measure the water temperature entering and trU cooling required:

PE0127 - Page 8 of 18

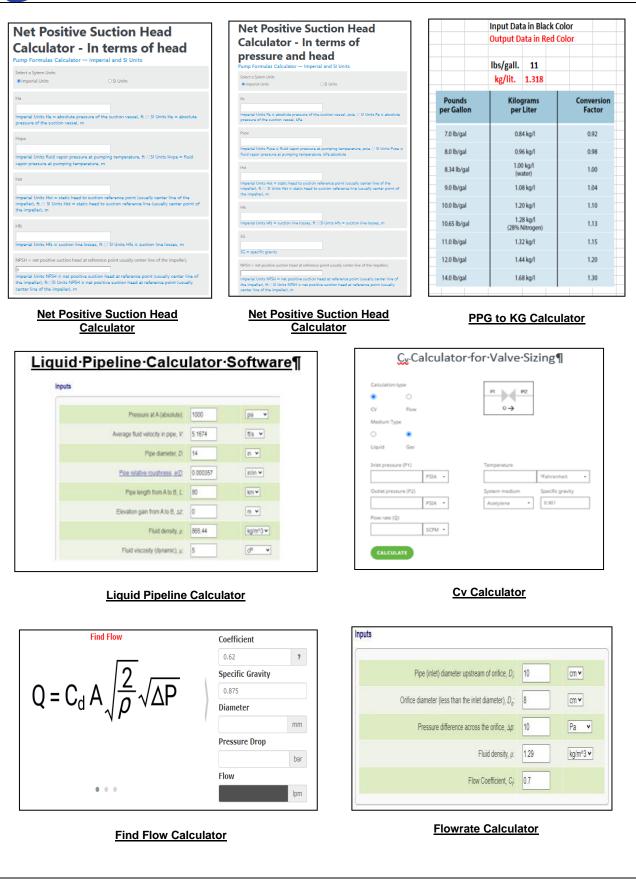
Inputs

Pipe (inlet) diameter upstream of orifice, <i>D</i> _i :	8	in 🗸
Orifice diameter (less than the inlet diameter), D_o :	3	in 🗸
Pressure difference across the orifice, Δp :	20	psi 🗸
Fluid density, p:	835	kg/m^3 🗸
Flow Coefficient, C _f :	0.82	

Answers

Velocity at the inlet, V_i :	2.10 m/s	m/s ∨
Volumetric Flowrate, Q:	1080 gpm	gpm 🗸
Mass Flowrate:	56.7 kg/s	kg/s ∨

Flow Rate through an Orifice or Valve Calculator



PE0127 - Page 9 of 18

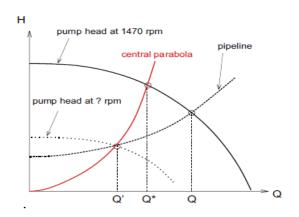
Haward Technology Middle East

PE0127 - Page 10 of 18

Calculate discharge coefficient	
using	hydraulic head 💌
Water level	H Q
Flow parameters	
	<u>m.*</u>
Flow parameters Diameter (d) Area (A)	<u>m *</u> m ² *
Diameter (d)	

Coefficient Discharge Calculator

	horsenower hour
	horsepower hour
	gallon [U.S.] of diesel oil
	gallon [U.S.] of diesel o
Convert	


PE0127 - Page 11 of 18

Liquid Pumpin	g Program	Output Results	
		Flow Velocity, ft/s	5.0154
<u>Input Data</u>		Erosion Velocity, ft/s	13.440
API	28	E/I.D.	0.001786
c.P.	5	sp.gr.	0.8871
1000 bbl/d	3.3	Re	19290.3
Length, km	2,4384	F	0.02987
		Hf, psi	153.67
I.D., in.	2.800	Hf, m water	108.17
Rough. (E), in.	0.005	Total Pump Dich. psi	276.68
Difference in elev., m	50	TDP, psi	196.68
Destination press., psi	60	Hydr. Power, HP	16.99
Pump Suc. psi	80	Hydr. Power, Kw	12.67
		Shaft Power, HP	18.88
Overall Pump Eff., %	65	Shaft Power, Kw	14.083
Motor Eff., %	90	Nama Plate Motor HP	23.60
Motor Loading %	80	Nama Plate Motor Kw	17.60

A pump running at 1470[rpm] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} = 45 - 2781Q^2$ $20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the central parabola (see figure), given by $H_{ap} = a Q^2$.

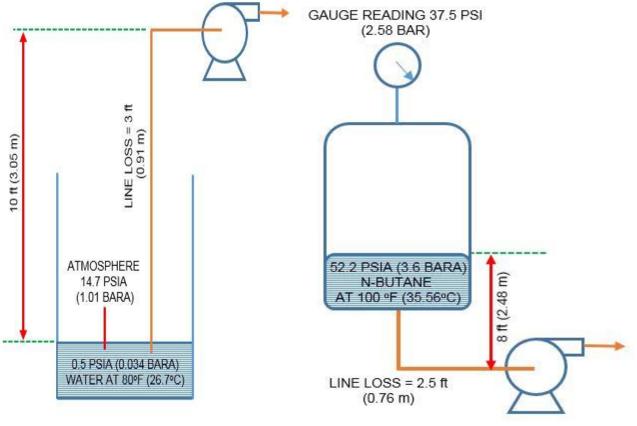
However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81 [m]$. Thus, the parameter of the affine parabola is $a = H'/Q'^2 =$ 9125.

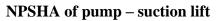
 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*) =$ $H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.

Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation


$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

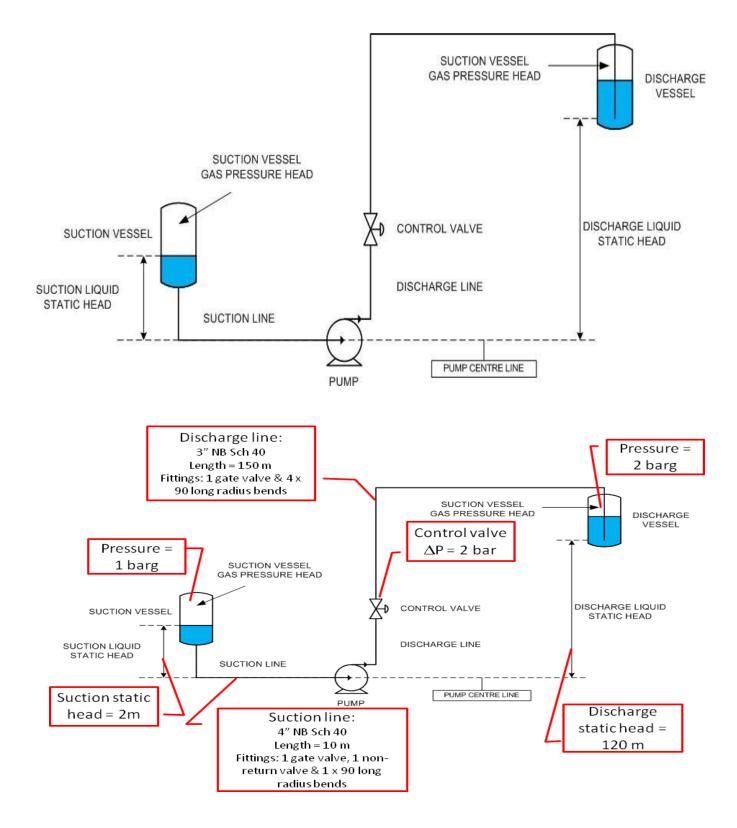


PE0127 - Page 12 of 18

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

NPSHA = Hatmp.+/- Hs – Hf – Hvap.

https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true http://www.pressure-drop.com/Online-Calculator/index.html


NPSH Calcula	ations	Output Results	
Input Data		Flow Velocity, ft/s	2.6620
API	36	=E/I.D.	0.001671
c.P.	3	sp.gr.	0.8448
Vapor pressure, psi	10	Re	17363.9
Atmp. Pressure, psi	14.7	F	0.0302
Height above pump, ft	20	Hf, psi	0.048
1000 bbl/d	2.0	· ·	
Length, km	0.003	Hf, ft water	0.111
I.D., in.	2.992	NPSHA, ft oil	32.72
Rough. (E), in.	0.005	NPSHA, ft water	27.64

PE0127 - Page 13 of 18

PE0127 - Page 14 of 18

Calculator

PUMP DETAILS

Pump tag number Suction vessel tag number Discharge vessel tag number Barometric pressure NPSH available margin Pump efficiency	P-001 V-001 V-002 P _{atm} 1.013 bara H _{margin} 0 m γ 70%
FLUID PROPERTIES	
Fluid Phase Flowrate Density Viscosity Vapour pressure	Water Liquid m 30000 ρ 998 kg/m3 μ 1 P 0.023 bara
VESSEL GAS PRESSURES Suction vessel gas pressure Discharge vessel gas pressure	P _{suc_vessel} 1 barg P _{dis_vessel} 2 barg
STATIC HEADS Suction static head Discharge static head	H _{suc_static_head} 2 m H _{dis_static_head} 120 m

PIPELINES

		Suction Line	Discharge Line	
Pipe nominal diameter		4 🗸	3 🛩	inch
Pipe schedule		Sch 40 🛩	Sch 40 🛩	
Pipe internal diameter	d	102.26	77.92	mm
Pipe length	L	10	150	m
Absolute roughness	е	0.046	0.046	mm

OUTPUTS

Volumetric flow rate

Q

30.060 m3/hr

		Suction Line	Discharge Line]
Relative roughness	e:d	0.00045	0.00059]
Flow area	Α	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170]
Flow regime		turbulent	turbulent]
Friction factor	f	0.02011	0.02010]
Pipe velocity head loss	K _{pipe}	1.966	38.695]
Fittings total velocity head loss	K _{fittings}	1.724	2.152]
Frictional pressure loss		0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

Pump suction pressure	Psuction	2.19 bara
Pump suction head	H _{suction}	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head	H _{discharge}	157.16 m
Net positive suction pressure available	PNPSHA	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure	ΔP _{pump}	13.20 bar
Pump total differential head	Hpump	134.79 m
Pump absorbed power	E	15.74 kW

PE0127 - Page 15 of 18

Results of above calculations may be confirmed through either of followinglinks:

https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

<u>Power Calculations:</u> https://inventory.powerzone.com/resources/centrifugalpump-powercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20FT%3Apu%3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d_1363.html

Input Data		Output Results	
T1, F	60		
к	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1		
No. of Comp. stages	3	Gas, kg/s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85		10701.07
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
input Data		Mega Watt	0.220
Million DTU/hr	0.75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
A DI	10.0	gallon/hr.	1498.4
API	10.0	Lit./min.	94.5
Constitution DTU/lb/F	1 00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Dalta Tanun - C	C 0	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
Hanten Fff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., %	100	Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchanger-tubesidepressure-drop-calculation/

PE0127 - Page 16 of 18

Input Data		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water Inlet pressure = 4 barg Inlet temperature = 50°C Outlet temperature = 30°C Tubeside flowrate = 50000 kg/hr Number of tubes = 25 Tube ID (internal diameter) = 1 inch Tube length = 3.5 m

Total volumetric flow = 50000 kg/hr \div 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 \div 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

kg/h

kg/m³

cР

mm

Pressure loss across a single tube ($\Delta P/L$) = 6.17 bar/km

SINGLE PHASEFLOW INPUTS W - Mass flow capacity 2000 $\rho - Density$ of fluid 988 $\mu - Viscosity$ of fluid (either liquid or gas) 0.53 PIPE SPECIFICATIONS e e - Effective roughness of the pipe 0.045 d - Nominal diameter of the pipe 1

d – Nominal diameter of the pipe	1	inches
sch – <u>pipe schedule</u>	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	m ³ /hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m Tubeside pressure drop (ΔΡ) = 6.17 × 3.5 / 1000 = 0.0216 bar

PE0127 - Page 17 of 18

Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar). The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside <u>mass</u> flow	50000	kg/hr
Tubeside Density	988	kg/m ³
Tubeside Viscosity	0.53	cP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Book(s)

As part of the course kit, the following e-book will be given to all participants:

<section-header><text><text><image/></text></text></section-header>	Title: Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best PracticesISBN: 978-1-49690-868-1Authors: Julien LeBleu Robert PerezPublisher: AuthorHouse
---	---

Course Coordinator Mari Nakintu, Tel: +971 230 91 714, Email: mari1@haward.org

PE0127 - Page 18 of 18

