

COURSE OVERVIEW PE0120 Catalyst Selection & Production Optimization

Course Title

Catalyst Selection & Production Optimization

Course Reference

PE0120

Course Duration/Credits

Five days/3.0 CEUs/30 PDHS

Course Date/Venue

Course Dater veriue		
Session(s)	Dates	Venue
1	January 21-25, 2024	Kizkulesi, Crown Plaza Istanbul Asia Hotels & Convention Center, Istanbul, Turkey
2	February 18-22, 2024	Oryx Meeting Room, Doubletree By Hilton Doha-Al Sadd, Doha, Qatar
3	March 03-07, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zaved Road, Dubai, UAE

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Most process plant operations are divided into two sectors; the reactor section and the separation section. The high value products are produced in the reactor section and purified in the separation section. The proper reactor design and catalyst selection can greatly improve company profit margins. The net effect is to produce increasing amounts of higher value products by improving selectivity.

Reactor design and catalyst developments are one of the largest Research and Development (R&D) Divisions in Chemical Engineering. To stay abreast of the current reactor designs and catalyst developments should be an operations personnel's target.

This course will guide the participants to develop key concepts and techniques to operate, select and optimize catalytic processes in process plants. These key concepts can be utilized to make proper design and operating decisions in order to optimize production.

The course is intended to give engineers and senior operators who work with solid catalysts the knowledge on different types of catalysts used in the petroleum and petrochemical industries.

The course will provide concise description of today's most important catalytic processes, including petroleum refining, supported metal catalysis, zealot catalysis, oxidation catalysis, air pollution control and synthesis gas reactions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Develop key concepts and techniques to operate, select and optimize catalytic processes
- Apply catalyst development and catalyst evaluation techniques in alkylation, hydrogenation, dehydrogenation, isomerization, hydro cracking and de-alkylation, fluidized catalytic cracking, hydrodesulphurization and catalytic reforming
- Implement and optimize Ziegler-Natta polymerization processes
- Operate and select Metallocene Catalysts
- Command the key requirements and implications of the Reaction Mechanisms
- Describe Post Metallocene Single-site Catalysts
- Analyze current problems and future trends in single-site catalysis
- Recognize competitive advances in Zeigler-Natta technology for polypropylene and polyethylene

Who Should Attend

This course provides an overview of all significant aspects and considerations of catalyst selection and production optimization for those who are making day-to-day decisions regarding production, operation, economics, troubleshooting and solving catalyst problem in process plant, R&D, R&T, or laboratory. This includes managers, superintendents, supervisors, process engineers, chemical engineers, chemists and other senior technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

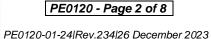
30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

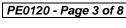
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.



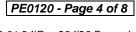
Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting &

Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch & Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.


Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Course Fee

Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

<u>Course Program</u>
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Duy 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction Chemistry Overview ● Refinery Overview ● Petrochemical Plant Overview
0930 - 0945	Break
0945 – 1100	Alkylation Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advanced in Catalyst Development • Catalyst Evaluation Techniques
1100 – 1230	Hydrogenation Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advance in Catalyst Development • Catalyst Evaluation Techniques
1230 - 1245	Break
1245 – 1420	DehydrogenationIntroduction, History, Process Overview and Process Chemistry● Feedstock,Reaction, Catalyst● Process Variables and Common Problems● Advance inCatalyst Development● Catalyst Evaluation Techniques
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 2

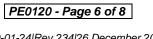
Day L	
0730 – 0900	Isomerization Introduction, History, Process Overview and Process Chemistry ● Feedstock, Reaction, Catalyst ● Process Variables and Common Problems ● Advance in Catalyst Development ● Catalyst Evaluation Techniques
0900 - 0915	Break
0915 – 1100	Hydrocracking & De-Alkylation Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advance in Catalyst Development • Catalyst Evaluation Techniques

1100 – 1230	Fluidized Catalytic Cracking Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advance in
	Catalyst Development • Catalyst Evaluation Techniques
1230 - 1245	Break
1245 – 1420	Hydrodesulfurization Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advance in Cat Development • Catalyst Evaluation Techniques
1420 - 1430	Recap
1430	Lunch & End of Day Two

Dav 3

Day 3	
0730 – 0900	Catalytic Reforming Introduction, History, Process Overview and Process Chemistry • Feedstock, Reaction, Catalyst • Process Variables and Common Problems • Advance in Catalyst Development • Catalyst Evaluation Techniques
0900 - 0915	Break
0915 - 1100	Ziegler-Natta Polymerization Commercial Ziegler-Natta Polymers
1100 - 1230	Ziegler-Natta Polymerization (cont'd) Heterogeneous Ziegler-Natta Catalysts and Mechanism of Polymerization
1230 – 1245	Break
1245 – 1420	Ziegler-Natta Polymerization (cont'd) Stereochemistry of Ziegler-Natta Polymerization
1420 - 1430	Recap
1430	Lunch & End of Day Three

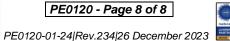
Day 4


Duy T		
0730 - 0900	Ziegler-Natta Polymerization (cont'd) Homogeneous Ziegler-Natta Polymerization	
0900 - 0915	Break	
0915 - 1045	Ziegler-Natta Polymerization (cont'd) Metathesis and Ring-Opening Metathesis Polymerization	
1045 - 1215	Basic Principles of Metallocene & Single-Site Chemistry & Catalysts Ziegler-Natta Olefin Polymerization ● Metallocene Chemistry: General Aspects	
1215 - 1230	Break	
1230 – 1330	Historical Development of Metallocene Catalysts Titanocene and Lanthanide Catalysts • Zirconocene Catalysts • Current Scope of Metallocene Catalyst Applications	
1330 – 1420	Reaction Mechanisms Catalyst Activation, Propagation, Chain Transfer, Deactivation ● Active Site Structure: Key Requirements and Implications ● Co-catalysts ● Influence of Counterions, Lewis Bases, TMA ● Kinetic Profiles ● Comparison of Single-Site and Multi-Site Catalysts	
1420 - 1430	Recap	
1430	Lunch & End of Day Four	

Day 5

Day 5	
0730 – 0900	Post Metallocene Single-Site Catalysts Constrained Geometry Ti Catalysts ● Amide-Based Ti and Zr Catalysts ● FI Catalysts ● Living Olefin Polymerization ● Discrete V and Cr Catalysts ● Key Design Issues for Late Metal Catalysts ● Di-imine Ni and Pd Catalysts ● Pyridine-Bis-Imine Fe and Co Catalysts ● New Catalysts Derived from SHOP Systems
0900 - 0915	Break
0915 – 1100	Current Problems & Future Trends in Single-Site Catalysis Ligand and Metallocene Synthesis: Problems and Prospects • Cocatalysts, Activators and Anions • Polar Monomers: Toward Functionalized Polyolefins • Functionalized Polynorbornenes • Ethylene-acrylate Copolymerization • Prospects for Vinyl Halides, Vinyl Acetate and other Polar Monomers • General Strategies for Catalyst Design and Development
1100 – 1230	Competitive Advances in Zeigler-Natta Technology for Polypropylene & Polyethylene Advanced Zeigler-Natta Catalysis & Multiple Process Technology vs. Metallocene Revolution, Competition and Complementarity • Stepping Out of the Box with Zeigler-Natta and Metallocene Catalyst for Propylene Based Resins
1230 - 1245	Break
1245 – 1345	Competitive Advances in Zeigler-Natta Technology for Polypropylene & Polyethylene (cont'd) NovaCat T: A New Zeigler-Natta Catalyst for Polyethylene Production in Gas Phase Reactors
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u>
This practical highly-interactive course includes the following real-life case studies:-


<u>Course Coordinator</u>
Kamel Ghanem, Tel: +971 2 30 91 714, Email: <u>kamel@haward.org</u>

