

COURSE OVERVIEW IE0338 Inspection, Maintenance & Calibration Program of **Terminal Flowmetering Station**

Course Title

Inspection, Maintenance & Calibration Program of Terminal Flowmetering Station

Course Date/Venue

February 11-15, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(30 PDHs)

Course Reference

IE0338

Course Duration/Credits

Five dove/2.2.2.7

Five days/3.0 CEUs/30 PDHs

Course Objectives

This course is designed to provide participants with a detailed and up-to-date overview of Inspection, Maintenance & Calibration Program of Terminal Flowmetering Station. It covers the role, principles and custody transfer of flow measurement in the industry; the different types of flowmeters and the frameworks industry standards, legal regulatory requirements in the oil and gas sector: the importance of safety and establishing protocols for inspection and maintenance; and the routine inspection techniques for flowmeters instruments and ultrasonic flowmeters.

Further, the course will also discuss the Coriolis flowmeters and its design, principle, installation and troubleshooting: effective strategies for maintenance planning and schedules: the predictive and preventative maintenance bv comparing its approaches for optimal performance; resolve common flowmeter problems and the importance of accurate documentation and record keeping in maintenance and calibration: importance and basics of calibration; and the master meter, volumetric and gravimetric methods in proving systems.

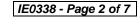
During this interactive course, participants will learn the calibration standards and traceability, compliance with international standards; the field calibration techniques, improve measurement accuracy; the QA/QC in flow measurement and calibration, the legal and financial implications of custody transfer; the designing and operating custody transfer systems and the techniques for accurate sampling and product analysis; the principles and methods for hydrocarbon allocation; and manage data for transparency and accountability.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on inspection, maintenance and calibration program of terminal Flowmetering station
- Discuss the role, principles and custody transfer of flow measurement in the industry
- Enumerate the different types of flowmeters and recognize the industry standards, legal frameworks and regulatory requirements in the oil and gas sector
- Identify the importance of safety and establishing protocols for inspection and maintenance
- Carryout routine inspection techniques for flowmeters and instruments and discuss ultrasonic flowmeters and Coriolis flowmeters covering its design, principle, installation and troubleshooting
- Develop effective strategies for maintenance planning and schedules
- Differentiate predictive and preventative maintenance by comparing its approaches for optimal performance
- Identify and resolve common flowmeter problems and recognize the importance of accurate documentation and record keeping in maintenance and calibration
- Explain the importance and basics of calibration and employ the master meter, volumetric and gravimetric methods in proving systems
- Apply calibration standards and traceability through ensuring compliance with international standards
- Recognize field calibration techniques as well as improve measurement accuracy
- Implement QA/QC in flow measurement and calibration as well as evaluate the legal and financial implications of custody transfer
- Design and operate custody transfer systems and apply the techniques for accurate sampling and product analysis
- Discuss the principles and methods for hydrocarbon allocation and manage data for transparency and accountability

Exclusive Smart Training Kit - H-STK®


Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of inspection, maintenance and calibration of terminal Flowmetering station for instrumentation and control engineers, mechanical engineers, facility managers, maintenance technicians, calibration technicians, quality assurance and control personnel and those who are involved in the oil and gas and petrochemical industry where accurate measurement of fluid flow is critical.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control, Process Control, Instrumentation, Troubleshooting & Problem Solving, Instrumentation Engineering, Process

Control (PCI) & Safeguarding, Instrument Calibration & Maintenance, Instrumented Safety Systems, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), High Integrity Protection Systems (HIPS), Process Controller, Control Loop & Valve Tuning, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System -Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the **Projects Manager** wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the Contracts & Projects Manager, Managing Director, Technical Director, Divisional Manager, Plant Automation Engineer, Senior Consulting Engineer, Senior Systems Engineer, Consulting Engineer, Service Engineer and Section Leader from several international companies such as Philips, FEDMIS, AEG, DAVY International, BOSCH, Billiton and Endress/Hauser.

Mr. Thoresson is a Registered Professional Engineering Technologist and has a Bachelor's degree in Electrical & Electronics Engineering and a National Diploma in Radio Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops worldwide.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 11th of February 2024

<u> </u>	Canady, 11 Cit Condany 2021
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of the Oil & Gas Terminal: Understanding the Role of Flow
	Measurement & Custody Transfer in the Industry
0930 - 0945	Break
0945 – 1130	Principles of Flow Measurement : Introduction to Various Flow Measurement
	Technologies & their Applications
1130 - 1230	Types of Flowmeters: Detailed Exploration of Different Types of Flowmeters
	Used in the Oil & Gas Sector
1230 - 1245	Break
1245 – 1320	Standards & Regulatory Requirements: Overview of Industry Standards,
	Legal Frameworks & Compliance
1320 - 1420	Safety Protocols & Procedures: Importance of Safety & Establishing Protocols
	for Inspection & Maintenance
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2: Monday, 12th of February 2024

Day Z.	monday, 12 on condary 2	U L 7			
0730 - 0830	Basic Inspection Technique	es: Introduction to	Routine Insp	ection Techniq	jues
	for Flowmeters & Instruments	3			
0830 - 0930	Ultrasonic Flowmeters:	Understanding	Principle,	Installation	ક
	Troubleshooting	_	·		
0930 - 0945	Break				

0945 - 1130	Coriolis Flowmeters: Detailed Study of Design, Operation & Maintenance
1130 – 1230	Maintenance Planning: Developing Effective Maintenance Strategies &
1230 – 1245	Schedules Break
	Predictive vs. Preventative Maintenance: Comparing Maintenance
1245 – 1420	Approaches for Optimal Performance
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Tuesday, 13th of February 2024

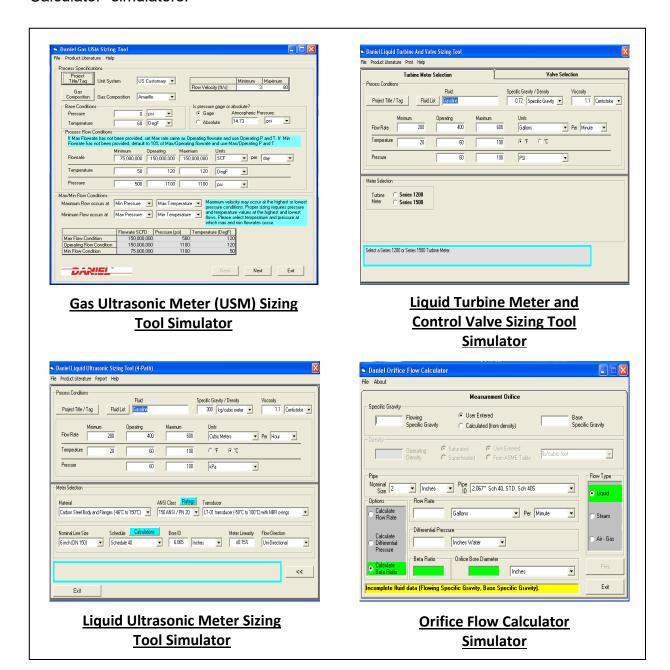
Day S.	ruesday, 13 Or February 2024
0730 - 0830	Troubleshooting Common Issues: Identifying & Resolving Common
	Flowmeter Problems
0830 - 0930	Documentation & Record Keeping : Importance of Accurate Documentation in
	Maintenance & Calibration
0930 - 0945	Break
0945 - 1130	Calibration Principles: Understanding the Importance & Basics of Calibration
1130 – 1230	Proving Systems: In-depth Study of the Master Meter, Volumetric &
	Gravimetric Methods
1230 - 1245	Break
1245 – 1420	Calibration Standards & Traceability: Ensuring Compliance with
	International Standards
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4: Wednesday, 14th of February 2024

Day 4.	Wednesday, 14 Offebruary 2024
0730 - 0830	Field Calibration Techniques: Hands-on Approaches to In-Situ Calibration
0830 - 0930	Accuracy & Repeatability: Understanding & Improving Measurement
	Accuracy
0930 - 0945	Break
0945 - 1130	Quality Assurance & Control : Implementing QA/QC in Flow Measurement &
	Calibration
1130 - 1230	Custody Transfer Overview: Understanding the Legal & Financial
	Implications
1230 - 1245	Break
1245 - 1420	Metering Stations & Systems: Design & Operation of Custody Transfer
	Systems
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5: Thursday, 15th of February 2024

Day 5:	Thursday, 15" Of February 2024
0700 - 0830	Sampling & Analysis: Techniques for Accurate Sampling & Product Analysis
0830 - 0930	Allocation Measurement : Principles & Methods for Hydrocarbon Allocation
0930 - 0945	Break
0945 - 1100	Data Management : Managing Data for Transparency & Accountability
1100 - 1230	Auditing & Compliance: Preparing for & Handling Audits in Custody
	Transfer
1230 - 1245	Break
1245 - 1345	Case Studies: Real-World Examples of Complex Issues & Solutions in Flow
	Measurement
1345 - 1400	Course Conclusion
1400 – 1415	POST TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool" and "Orifice Flow Calculator" simulators.

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

