

COURSE OVERVIEW EE0382-4D

ABB LV & MV Switchgears & Associated Equipment Operation, Maintenance, Testing, Troubleshooting & Protection

Course Title

ABB LV & MV Switchgears & Associated Equipment Operation, Maintenance, Testing, Troubleshooting & Protection

Course Reference

EE0382-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

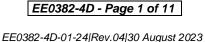
Course Date/Venue

Session(s)	Date	Venue
1	January 09-February 01, 2024	Club B Meeting Room, Ramada Plaza by Wyndham Istanbul City Center, Istanbul, Turkey
2	April 22-25, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
3	July 15-18, 2024	Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	October 28-31, 2024	Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of ABB LV & MV switchgears and associated equipment operation, maintenance. testing. troubleshooting and protection. It covers the electrical hazards: the personnel protection; the energized work and de-energized and electrical switching practices; the fundamentals of ABB circuit breakers; and the switchgear details, circuit breakers control circuit and ABB protection relaying.


During this interactive course, participants will learn the ANN switchgear asset management, equipment register, switchgear diagnostic techniques, tripping device, maintenance and testing; the ABB LV/MV substation bus arrangement, incoming and outgoing circuits, current transformers and voltage transformers; the components of protection schemes; the numerical relays and ground potential rise during power system faults; the feeder overcurrent protection, distribution protection and breaker failure, bus protection, transformer protection, motor protection, power quality and distribution protection; and the ABB medium voltage fuses, current limiting switching device, ABB vacuum interrupters, medium voltage surge arrestors and ABB relay configuration.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on ABB LV & MV switchgears and associated equipment operation, maintenance, testing, troubleshooting and protection
- Discuss electrical hazards covering electrical shock, electrical arc and blast
- Identify personnel protection covering rubber gloves/blanket, flash suits, eye protection, hard hats and explosion protection
- Differentiate energized work and de-energized work as well as apply electrical switching practices
- · Recognize the fundamentals of ABB circuit breakers covering types of breakers, construction, ratings and trippings characteristics in a network context
- Describe switchgear details, circuit breakers control circuit and ABB protection relaying
- Carryout ANN switchgear asset management, equipment register, switchgear diagnostic techniques, tripping device, maintenance and testing
- Recognize ABB LV/MV substation bus arrangement, incoming and outgoing circuits, current transformers and voltage transformers
- Identify the components of protection schemes as well as discuss numerical relays and ground potential rise during power system faults
- · Carryout feeder overcurrent protection, distribution protection and breaker failure, bus protection, transformer protection, motor protection, power quality and distribution protection
- Discuss ABB medium voltage fuses, current limiting switching device, ABB vacuum interrupters, medium voltage surge arrestors and ABB relay configuration

Who Should Attend

This course provides an overview of all significant aspects and considerations of ABB LV & MV switchgears and associated equipment operation, maintenance, testing, troubleshooting and protection for engineers and technicians who are working with ABB LV & MV switchgears; for those who are responsible for designing and configuring ABB switchgear protection systems; and those who are responsible for isolating and correcting problems or performing basic maintenance on ABB LV & MV switchgear components.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

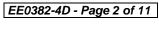
30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

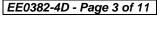
Certificates are accreditation by the following international accreditation organizations:

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.


British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

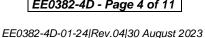
This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a Senior Electrical & Instrumentation Engineer with almost 35 years of extensive experience within the Oil, Gas, Power, Petroleum, Petrochemical and Utilities industries. His experience widely covers in the areas of Protection Relay Application, Maintenance & Testing, Information Confidentiality, Data Confidentiality Classification, IT Risk Management Concepts, NEC (National Electrical Code), NESC (National Electrical Safety Code), Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Lock-

Out & Tag-Out (LOTO), Confined Workspaces, Alerting Techniques, Electrical Transient Analysis Program (ETAP), Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators, Generator Protection, GE Gas Turbines, PLC, SCADA, DCS, Process Control, Control Systems & Data Communications, Instrumentation, Automation, Valve Tuning, SIS, SIL, ESD, Alarm Management Systems, Engine Management System, Bearing & Rotating Machine, Fieldbus Systems and Fiber Optics Technology. He is currently the Systems Control Manager of Siemens where he is in-charge of Security & Control of Power Transmission Distribution & High Voltage Systems and he further takes part in the Load Records Evaluation & Transmission Services Pricing.

During his career life, Dr. Ahmed has been actively involved in different Power System Activities including Roles in Power System Planning, Analysis, Engineering, HV Substation Design, Electrical Service Pricing, Evaluations & Tariffs, Project Management, Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as Siemens, Electricity Authority and ACETO industries as the Instrumentation & Electrical Service Project Manager, Energy Management Engineer, Department Head, Assistant Professor, Project Coordinator, Project Assistant and Managing Board Member where he focused more on dealing with Technology Transfer, System Integration Process and Improving Localization. He was further greatly involved in manufacturing some of Power System and Control & Instrumentation Components such as Series of Digital Protection Relays, MV VFD, PLC and SCADA System with intelligent features.

Dr. Ahmed is well-versed in different electrical and instrumentation fields like ETAP, Load Management Concepts, PLC Programming, Installation, Operation and Troubleshooting, AC Drives Theory, Application and Troubleshooting, Industrial Power Systems Analysis, AC & DC Motors, Electric Motor Protection, DCS SCADA, Control and Maintenance Techniques, Industrial Intelligent Control System, Power Quality Standards, Power Generators and Voltage Regulators, Circuit Breaker and Switchgear Application and Testing Techniques, Transformer and Switchgear Application, Grounding for Industrial and Commercial Assets, Power Quality and Harmonics, Protective Relays (O/C Protection, Line Differential, Bus Bar Protection and Breaker Failure Relay) and Project Management Basics (PMB).


Dr. Ahmed has PhD, Master & Bachelor degrees in Electrical Engineering from the University of Wisconsin Madison, USA and Ain Shams University, respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/ Assessor/Trainer by the Institute of Leadership and Management (ILM), an active member of IEEE and ISA as well as numerous technical and scientific papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System Blackout Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV Substation Automation and Power System Stability.

Course Fee

Istanbul	US\$ 5,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 4,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day
Al Khobar	US\$ 4,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

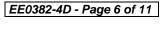
Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome and Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Electrical Hazards
0830 - 0930	Electrical Shock
0930 - 0945	Break
	Personnel Protection
0945 - 1100	Rubber Gloves/Blanket • Flash Suits • Eye Protection • Hard Hats • Explosion
	Protection
	Energized Work
1100 - 1130	Policies & Procedures • Recognition • Work Zones (Controlled Areas) • Work
	Clearances • Planning a Job • Proper Tools
	De-Energized Work
1130 – 1200	Policies & Procedures • Voltage Detection Equipment • Lock & Tag Out •
	Grounds/Grounding • Personal Grounds
1200 - 1230	Electrical Switching Practices
1200 - 1230	<i>Loads</i> ● <i>Transformers</i> ● <i>Capacitors</i> ● <i>Air Switches</i>
1230 - 1245	Break
	Fundamentals of ABB Circuit Breakers
1245 - 1420	Types of Breakers & Construction ● Ratings & Tripping Characteristics Switchgear
	in a Network Context • SF6 & Vacuum CB • Operating Mechanisms
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

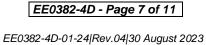
Day 2

Day Z		
	Switchgear Details	
0730 - 0930	Ratings Ur, Ik, Ip, Va • Degree of Protection • Service Conditions • Ancillary	
	Equipment • The ABB Medium Voltage Switchgear Using either Vacuum or SF6	
	Circuit Breakers	
0930 - 0945	Break	
	Circuit Breakers Control Circuit	
	Control System Structure & Instrument Transformers • Current & Voltage	
0945 – 1100	Transformers • Panels, Signaling & Interlocking • Typical Connection Diagrams •	
	Primary & Back-up Relaying • Fault Calculation • Circuit Breakers Characteristics	
	● Selectivity, Sensitivity & Speed ● Reliability	
1100 - 1130	ABB Protection Relaying	
1100 - 1150	Setting or Protection • Fault Clearance • Redundant Control Circuits	
	ANN Switchgear Asset Management	
1130 – 1200	Equipment Register • CBM & RCM Process • Switchgear Diagnostic Techniques •	
	Tripping Device, Maintenance & Testing	
	ABB LV/MV Substation Bus Arrangement, Incoming & Outgoing Circuits	
1200 – 1230	Automatic Switching During Normal or Abnormal Conditions • Bus Protection &	
	Circuit Breaker System • Breaker Failure Relay & Zone Selection Logic	
1230 – 1245	Break	
	Current Transformers & Voltage Transformers	
	Various Types of C.T.'s V.T.'s & C.V.T.'s • Theory & Characteristics of C.T.'s •	
1245 - 1420	Application Requirements of C.T.'s for Protective Relaying • Accuracy	
	Classifications • Future Trends in C.T. Design Using Optics • Testing of C.T.'s &	
	V.T.'s	
	Recap	
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed	
	Tomorrow	
1430	Lunch & End of Day Two	

Day 3

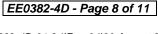

Day 3		
	Components of Protection Schemes	
0730 - 0930	Fault Detecting Relays • The Transition from Electro-Mechanical Relays to	
	Electronic & Digital Microprocessor-Based Relays • Tripping Relays & Other	
	Auxiliary Relays • The Application of Programmable Logic Controllers • Circuit	
	Breakers – Bulk-Oil, Air-Blast, Vacuum & SF ₆	
0930 - 0945	Break	
	Numerical Relays	
0045 1100	Hardware Architecture of ABB Numerical Relays • Digital Signal Processors •	
0945 – 1100	Modern Microprocessor-Based Relays • Optical Communications • Review Types of	
	Available ABB Protection Relays	
1100 – 1130	Ground Potential Rise During Power System Faults	
	Step Voltage, Touch Voltage & Mesh Voltage • Tolerable Limits of Body Currents	
	During Power System Faults • Calculation of Allowable Step & Touch Potentials	
1130 – 1200	Feeder Overcurrent Protection	
	Protective Relaying Requirements for Radial Systems • Protective Relaying	
	Requirements for Ringl Systems	
·		

1200 - 1230	Distribution Protection & Breaker Failure
	Distribution Systems • Selective Coordination • Protection Zones & Reach •
	Minimizing Customer Impact • Symmetrical Components Review
1230 - 1245	Break
	Bus Protection
1245 – 1420	Types of Bus Protection Schemes • Basic Concept of Differential Protection •
1243 - 1420	Application to Various Bus Configurations ● Application of High Impedance Relays
	• Relay Setting Criteria • Testing of Bus Protection Schemes
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

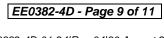

Day 4	
_	Transformer Protection
0730 - 0830	Basic Theory of Transformers • Types of Transformers & Applications • Main
	Electric Characteristics & Vector Group ■ Built-on Protections (Buchholz Relay,
	Overpressure, Oil & Winding Temperature) • Transformer Differential
	Protection (Principle & Application) • Overcurrent Protection • Practical
	Examples
	Motor Protection
	Motor Data Requirements ● Common Types of Faults (Electrical & Mechanical) ●
	Motor Controllers & Starters • Overcurrent (Phase-to Earth & Phase-to-Phase
0830 - 0930	Short-Circuit) & Thermal Overload Protection • Negative Phase Sequence, Phase
	Unbalance & Phase Reversal Protections • Bearing Temperature, Winding
	Temperature, Vibration & Blocked Rotor Protections • Practical Examples &
	Exercises
0930 - 0945	Break
0945 - 1130	Power Quality & Distribution Protection
1130 – 1230	ABB Medium Voltage Fuses, Current Limiting Switching Device, ABB
1150 - 1250	Vacuum Interrupters & Medium Voltage Surge Arrestors
1230 – 1245	Break
1245 – 1345	Configure ABB Relay
	Use the Input/Output Matrix • Program the Default & Control Display •
	Program Additional Logic • Analyze Fault Records
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

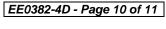
Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Switchgear Simulator", "GE Multilin Relay 469" and "GE Multilin Relay 750".



Switchgear Simulator




Switchgear Simulator

GE Multilin Relay 469 Simulator

GE Multilin Relay 750 Simulator

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

