

COURSE OVERVIEW PE0114-4D Process Plant Troubleshooting & Engineering Problem Solving

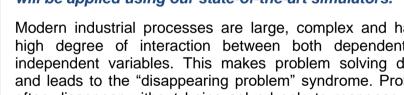
Course Title

Process Plant Troubleshooting & Engineering **Problem Solving**

Course Reference PE0114-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs


Course Date/Venue

Session(s)	Date	Venue
1	February 05-08, 2024	Club B Meeting Room, Ramada Plaza by Wyndham Istanbul City Center, Istanbul, Turkey
2	May 06-09, 2024	Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	August 12-15, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
4	November 18-21, 2024	Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Modern industrial processes are large, complex and have a high degree of interaction between both dependent and independent variables. This makes problem solving difficult and leads to the "disappearing problem" syndrome. Problems often disappear without being solved only to reappear again. This course deals with a unique approach of combining cause and effect problem solving thinking with formulation of theoretically correct working hypotheses to provide rapid and effective problem-solving techniques for the process industry.

Problem Solving in the process industry is often characterized by either inference based on cause-and-effect relationships or highly involved theoretical approaches. Neither of these approaches is satisfactory in a modern manufacturing environment. The cause/effect inference approach while being expedient often results in solutions that do not eliminate the problem, but in fact make the problem worse. The more sophisticated highly theoretical approach is rarely expedient enough to satisfy time constraints in a production facility. Thus, one of the most frequent industry requests to the academic world is "give us people that can solve problems".

PE0114-4D- Page 1 of 7

PE0114-4D-02-24|Rev.767|25 December 2023

This course presents an approach that emphasizes the classical problem-solving approach (defining the sequence of events) with the addition of the steps of formulating a theoretically correct working hypothesis, providing a means to test the hypothesis, and providing a foolproof means to eliminate the problem. The initial part of the course focuses on defining the problem that must be solved and obtaining the location, time and quantity-based specifications of the problem. The initial part of the course is suitable for all engineering disciplines as well as non-engineers.

The second part of the course deals with the utilization of chemical engineering fundamentals to develop a technically correct working hypothesis that is the key to successful problem solving. The primary emphasis is on pragmatic calculation techniques that are theoretically correct. These techniques have been developed by the course Instructor in 30+ years of industrial experience. Using these techniques, theoretically correct working hypotheses can be developed in an expedient fashion.

The course includes both sample problems as well as problem working sessions to allow the participants to develop confidence with the approach.

The attendees are encouraged to bring real problems that they are working to use in discussions on the last day of the course. These problems should be of a non-confidential nature that can be discussed without violation of any confidentiality restrictions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on process plant troubleshooting and engineering problem solving
- Enumerate the components of plant problem solving as well as the various troubleshooting techniques on engineering problem solving by familiarizing the potential sources
- Specify the limitations to plant problem solving through sources of historical data and explain the daily monitoring system guidelines by setting trigger points
- Apply the methods of risk analysis particularly HAZOP and MSDS in process plant troubleshooting and practice the process of engineering problem solving through sample problems in troubleshooting
- Discuss the scope of applied economics including other valuation forms & methods, and review the guidelines for problem solving temperature, pressure, and level
- Employ the simplified approach in solving compressor problems, distillation, plates & tray stability, discuss clearly the elements of measurements & verifications and carryout sample exercise on kinetics, flow, mechanical and designs
- Recognize the attributes of equivalent piping lengths, commercial correlations and fluids by means of practical exercises
- Discuss the importance of two-phase flow including its attributes and applications and analyze the characteristics of controllers, feedback, feedforward and cascade controls used in process control
- Recognize process control and optimization, process analyzers, distillation multiple control, volume control, condenser control and control project drawback

PE0114-4D- Page 2 of 7

- Employ heat transfer and various troubleshooting techniques and applications used in process plant
- Implement the procedures on distillation column packing and identify the different forms of hazards to equip them with the QRA procedures and demonstration
- Carryout proper methodology of MSDS and discuss if the needed information is good enough or incomplete

Who Should Attend

This course provides a complete and up-to-date overview of the process plant troubleshooting techniques and procedures used to solve engineering problems. Process engineers, plant managers, team leaders, section heads, plant supervisors and other technical staff will definitely benefit from the engineering problem solving approach of the course.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Istanbul	US\$ 5,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0114-4D- Page 3 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

CCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0114-4D- Page 4 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

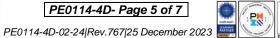
Mr. Adel Abdallah is a Senior Process & Chemical Engineer with over 20 years of extensive experience within the Petrochemical, Refinery and Oil & Gas industries. His expertise covers Fundamentals of Process Operations, Crude Oil & Refinery Products, Sampling & Feed/Product Quality, Process Troubleshooting & Problem Solving, Hydro-Treating Technology, Catalysts, Distillation Column, Process Heaters/Furnaces, Reboilers, Condensers, Piping System and P&ID. He is also well-versed in **Positive Displacement & Centrifugal Pumps**,

Compressors, Turbines, Fans, Blowers, Electric Motors, Gears & Transmission Equipment, Heat Exchangers, Valves, Packing & Mechanical Seal, Bearing, Alignment, Water & Wastewater Treatment, Steam Boiler, Air Couplings. Compressors and ISO system.

During Mr. Abdallah's career life, he has handled challenging positions wherein he has acquired his wide technical and practical experience in the field of process & chemical industry such as the Technical Instructor/Consultant, Senior Chemical Engineer, Chemical Engineer, Process Engineer, Technical Engineer and Production Supervisor for various companies such as the Jordan Petroleum Refinery, Jordanian Tunisian Chemicals Co., Al-Mas Resin Factory, Tabuk Chemical Fertilizer Factory, UIP-FCEC JV Design and Build Company, Degussa MBT and National Chlorine Company in the Middle East.

Mr. Abdallah has a Bachelor's degree in Chemical Engineering from the University of Jordan. Further, he is a Certified Instructor/Trainer and delivered various trainings internally in his previous companies.

Course Program


The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Registration & Coffee
Welcome & Introduction
PRE-TEST
Troubleshooting
Definition, Potential Sources
Engineering Problem Solving
Course Approach
Break
Components of Plant Problem Solving
Limitations to Plant Problem Solving
Sources of Historical Data
Daily Monitoring System Guidelines
Setting Trigger Points

Dav 1

PE0114-4D- Page 5 of 7

1215 – 1230	Break
1230 - 1300	Disciplined Learned Problem-Solving Approach
1300 - 1330	Step 1 to Step 6 – Considerations
1330 - 1400	Risk Analysis – HAZOP – MSDS
1400 - 1420	Troubleshooting Manual: Sample Problems
1420 - 1430	Recap
1430	Lunch & End of Day One

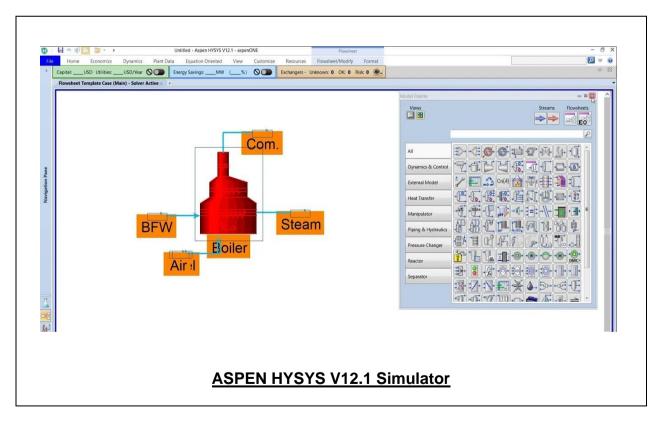
Day 2

0730 – 0800	Applied Economics
0800 - 0815	Valuation Principles & Methods
0815 - 0900	Other Valuation Principle & Methods
0900 - 0930	Compressor – Compressor Problems – Simplified Approach
0930 - 0945	Break
0945 - 1015	Distillation, Plates, Tray Stability
1015 - 1045	Guidelines for Problem Solving Temperature, Pressure, Level
1045 - 1115	Measurements, Verification
1115 - 1200	Sample Exercise Kinetics, Flow, Mechanical, Design
1200 - 1230	Fluid Overview – Basic Principles
1230 - 1245	Break
1245 - 1315	Fluid Overview – Head Definition
1315 - 1345	Equivalent Piping Lengths
1345 - 1420	Commercial Correlations
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Duy 5	
0730 – 0800	Practical Exercises
0800 - 0815	Two Phase Flow/Theory & Applications
0815 - 0900	Practical Exercises
0900 - 0930	Process Control – Introduction; PID
0930 - 0945	Break
0945 - 1015	Controllers, Feedback, Feedforward & Cascade Controls
1015 - 1045	Advanced Control; Multi-loop
1045 - 1115	Controllers; Process Control & Optimization
1115 - 1200	On Line Optimization; Process Analyzers
1200 - 1230	Distillation Multiple Control; Volume Control
1230 - 1245	Break
1245 - 1315	Condenser Control, Practical Considerations, Advanced
1315 - 1330	Control Project Drawback
1330 - 1400	Heat Transfer Overview
1400 - 1420	Troubleshooting Techniques/Applications
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4


0800 - 0830 Distillation Column Packing 0830 - 0900 Practical Exercises	0730 – 0800	Practical Exercises	
	0800 - 0830	Distillation Column Packing	
	0830 - 0900	Practical Exercises	
EAC W PE0114-4D-02-24 Rev.767 25 December 2023	BAC III		ET

0900 - 0930	Hazards
0930 - 0945	Break
0945 - 1015	Demonstration
1015 - 1045	QRA "Ishikawa" Diagrams • Exercises
1045 - 1115	MSDS
1115 - 1145	Needed Information, Is it Good Enough?
1145 - 1215	Incomplete?
1215 - 1230	Break
1230 - 1245	Accidents
1245 - 1315	FLIXBOROUGH ACCIDENT
1315 - 1345	Lessons Learned, General Information
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

<u>Course Coor</u>dinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

PE0114-4D- Page 7 of 7

