

COURSE OVERVIEW FE0862 AWS-CWEng Certified Welding Engineer Part 1 & 2

CEUS

Course Title

AWS-CWEng Certified Welding Engineer Part 1 & 2

Course Date/Venue

February 26-March 01, 2024/Nakheel Meeting Room, Royal Rose Hotel, Abu Dhabi, UAE

Course/Exam Date/Venue

Exam Date : TBA Exam Venue : TBA

Registration Closing Date: 8 weeks before

the course date

Course Duration/Credits

Five days/4.0 CEUs/40 PDHs (40 PDHs)

Course Reference

FE0862

Course Description

This practical and highly-interactive course includes practical sessions and exercises where participants carryout welding inspection. Theory learnt in the class will be applied using the "AWS Tool Kit" and "Structural Weld Replica Kit" suitable for in-class training: -

This course covers the qualification requirements for Welding Engineers. It describes how qualifications are determined, and the practice by which qualification may be attained and maintained.

The course will evaluate the qualifications of each individual, and provide examinations to test the individual's knowledge in engineering skills and knowledge as well as their ability to apply the principles of welding engineering.

The course is intended to supplement the minimum requirements of employers, codes, other standards, or documents and shall not be construed as a preemption of the employer's responsibility for the work or for the performance of the work. It shall be the responsibility of employers to determine that their employee, who, having qualified as a Welding Engineer, is capable of performing the specific duties involved in their career assignments.

Moreover, a person with the demonstrated education, experience, and knowledge as defined by this information and who successfully passes the required examinations is considered qualified as an AWS Certified Welding Engineer (CWEng).

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the AWS welding engineering exam and have enough knowledge and skills to pass such exam in order to get the AWS Welding **Engineer Certification**
- Discuss the basic science fundamentals covering mathematics, physics and chemistry
- Analyse simple calculations, special and trigonometric functions, algebraic equation, graphs and equations, geometry, hyperbola, parabola, complex numbers, calculus, statistics and simple correlation
- Recognize unit conversion, mass, weight, volume and density, force, energy, work done, power, stress and strain
- Employ Hooke's Law and differentiate moment and momentum
- Measure temperature, heat, thermocouples and pyrometers and classify thermal properties of material
- Describe various chemistry symbols, molecular weight and stoichiometry, acid and bases and balance chemical equations
- Evaluate gas combustion reactions and oxidation-reduction reactions as well as recognize the ideal gas law including mass balance, bulk and chemical analysis methodologies and reactivity, toxicity, environmental effect and disposal
- Recognize applied science fundamentals including strength of materials, heat transfer, fluid mechanics and electricity
- Discuss electricity comprising of current, voltage, resistance, impedance and circuits
- Differentiate Ohm's Law and Kirchoff's Law and analyse resistance loss and current rectification
- Perform proper handling of power generation, AC/DC and polarity
- Identify power factor, electromagnetic properties, right-hand rule, devices and principles of current and voltage measurements

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.



Who Should Attend

This course provides a wide understanding and deeper appreciation of welding engineering for inspection, piping and welding engineers who are seeking AWS CWEng certification. Other engineers, managers and technical staffs who are dealing with welding and fabrication will also benefit from this course.

AWS Certification

Delegates will be certified by AWS based on their exam scoring as per the following:-

CWI: Completion of Parts A, B and C with a minimum score of 72% in each part. CAWI: Completion of Parts A, B and C with a minimum score of 60% in each part. CWE: Completion of Parts A and B with a minimum score of 60% in each part.

To qualify as a Certified Welding Engineer, you must have a combination of qualifying education and work experience, with supporting documentation and should match at least one of the combinations in any one of the grids below:-

MINIMUM EDUCATION	MINIMUM WORK EXPERIENCE
Bachelor of Science or Higher Degree in Engineering	Minimum of one (1) years welding-based work experience
Bachelor of Science or Higher Degree in Engineering Technology	Minimum of two (2) years welding-based work experience
Other Related Bachelor of Science Degree	Minimum of five (5) years welding-based work experience
Associate in Applied Science (A.A.S.) degree	Minimum of ten (10) years welding-based work experience
High School Diploma or Approved High School Equivalent Program	Minimum of fifteen (15) years welding-based work experience

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

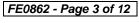
In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Training Fee

US\$ 6,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Exam Fees

US\$ 1,000 per Delegate + VAT.



Required Codes & Standards

Listed below are the effective editions of the publications required for the current Welding Engineer Certification Examination. Each student must purchase these documents separately and have them available for use during the class as their cost is not included in the course fees:-

Reference Title	Author	Publisher
ANSI Z49.1 Safety in Welding, Cutting and Allied Processes		AWS
Applied Fluid Mechanics, 4th Ed.	Mott	Merrill Publishing Company
ASM Handbook Vol. 17, NDE		ASM
ASM Handbook Vol. 6 Welding/ Brazing 10th Ed.		ASM
AWS D1.1 Structural Welding Code—Steel		AWS
Design of Weldments	Omer W. Blodgett	The James F. Lincoln Arc Welding Foundation
Engineer in Training Manual		
Essentials of Engineering Economics, 2nd Ed.	Riggs & West	McGraw Hill
Fracture & Fatigue Control in Structures, Application of Fracture Mechanics	John M. Barson & Stanley T. Rolfe	Prentice Hall Second Edition, 1987
Fundamentals of Engineering: The Most Effective FE/EIT Review	Merle C. Potter	Great Lakes Press
Fundamentals of Welding Technology, Modules 1 - 19		Gooderham Centre for Industrial Learning
Handbook of Arc Welding		James F. Lincoln Arc Welding Foundation
Introduction to the Practice of Statistics ISBN 0 7167 2250 X	Moore & McCabe	Freeman
Introductory Physical Metallurgy of Welding	Easterling	Butterworths
Introductory Welding Metallurgy		AWS
Manufacturing, Engineering & Technology ISBN 0 201 538460	Serope and Kalpakjian	Addison Wesley
Mark's Standard Handbook for Mechanical Engineers	Avallone and Baumeister	McGraw Hill
Mechanical Metallurgy	G. Dieter	McGraw Hill
Metals and How to Weld Them		James F. Lincoln Arc Welding Foundation, Second Edition, 1990
Modern Welding Technology, 4th Ed.	H.Cary	Prentice Hall
NFPA 51B Standard for Fire Prevention During Welding, Cutting, and Other Hot Work		National Fire Protection Association
Occupational Safety and Health Administration (OSHA), Code of Federal Regulations, Title 29 Labor, Part 1910 Subpart Q – Welding, Cutting, and Brazing		U.S. Government Printing Office
Occupational Safety and Health Administration (OSHA), Code of Federal Regulations, Title 29 Labor, Part 1910.1200 – Hazard Communication		U.S. Government Printing Office

Occupational Safety and Health Administration (OSHA), Code of Federal Regulations, Title 29 Labor, Part 1926 Subpart J– Welding and Cutting		U.S. Government Printing Office
Physics of Arc Welding	J. Lancaster	Pergamon
Product Design for Manufacture and Assembly ISBN 0 8247 9176 2	Boothroyd, Dewhurst & Knight	Marcel Dekker
Quality Control, 5th Ed.	Besterfield	Prentice Hall
Robots & Manufacturing Automation	Asfahl	John Wiley
Stainless Steel	R.A. Lula	ASM International, 1986
Statics & Strength of Materials, 3rd Edition, ISBN: 0-13-453201-5	Morrow	Prentice Hall
Statics & Strength of Materials: A Parallel Approach to Understanding Structures	Lawrence J. Wolf	Merrill Publishing Company
Welt IT CD, Computer Influence for Welding Personnel		Gooderham Centre for Industrial Learning
Weldability of Steels, 4th Edition, ISBN: 1-58145-430-9	R.D Stout	Welding Research Council
Welding Aluminum: Theory & Practice		The Aluminum Association, Second Edition, June 1991
Welding Design, Modules 30-39		Gooderham Centre for Industrial Learning
Welding Encyclopedia	Jefferson	AWS
Welding Handbook Vols. 1,2,3,4,8 th Ed.		AWS
Welding Metallurgy	Sindo Kou	John Wiley & Sons
Welding Metallurgy	Linnert	AWS
Welding Metallurgy	J.Lancaster	Pergamon
Welding Metallurgy, Modules 8,9,12,20-23		Gooderham Centre for Industrial Learning

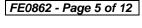
AWS publications may be ordered directly through **Haward Publications** at +971-2-596-9400. Orders may also be faxed to +971-2-596-9401, or e-mail info@haward.cc. More information is available at www.haward.cc. When calling to order, please identify yourself as an exam candidate and/or AWS member.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.



Course Accreditations

Haward Technology following international is accredited the accreditation organizations:-

American Welding Society (AWS)

Haward Technology is the International Agent of the American Welding Society (AWS) and the Authorized Provider of AWS international certification examinations outside the USA. Haward Technology exhibits compliance and adherence to AWS Quality Control Standards in the development, conduct and delivery of certification courses and exams for welding and inspection professionals on behalf of the American Welding Society.

The American Welding Society's certification programs are internationally recognized and are used as a benchmark of quality workmanship and skills within the welding industry around the world.

The International Accreditors for Continuing Education and Training (IACET - USA)

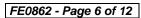
Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 4.0 CEUs (Continuing Education Units) or 40 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.



Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Peter McAlpine, MSc, CSWIP, Eur Ing, CEng, is a Senior Welding & Inspection Engineer with over 35 years of extensive onshore and offshore experience within the Oil & Gas, Refinery, Petrochemical, Refining and Energy industries. His wide expertise covers Welding Technology, Fabrication & Inspection, Welding Engineering, Welding Inspection & Metallurgy, Welding Techniques & Failure, Welding Safety, Welding Process (GTAW, SMAW, FCAW, GMAW, SAW & PA),

Weld Fails & Default Analysis, Arc Welding Equipment, Butt Fusion & Electrofusion Welding of Pipe, Welding & Quality, Process Piping & Pressure Vessel Fabrication, Weld-Overlay in CRA Pipeline & Valves, Welding in Steam Systems, Welding Procedure Qualification Record (WPQR), Preliminary (pWPS) & Welding Procedure Specification (WPS), Welding Performance Qualification (WPQ), Corrosion Resistant Alloy (CRA) Pipeline, Raw Gas Injection (RGI) Fabrication, Installation & Commissioning, Repair Weld Procedures, Mechanical Testing & Problem Solving, Piping Inspection, Corrosion & Materials Inspection, Risk Based Inspection, Aboveground Storage Tank Inspection, Pressure Vessel Inspection, Turnaround Inspection, Platform Structures & Pressure System Equipment Inspection, Static Equipment Inspection, Pressure Relief Valves Inspection & Testing, Risk Based Assessment, Pipeline Defect Assessment, Non-Destructive Testing (MT, PT, UT, RT), NDT & Corrosion Monitoring, Radiography & Vibration, Piping & Storage Tanks, Heat Exchangers, Process Side Vessels & Piping, Integrity Management System, Corrosion Management, Steel Structure Welding, Steel Jackets Inspection and knowledgeable with the international industry standards such as AWS, ASME, API, TEMA, BS/EN, ANSI, DNV & EEMUA.

During his career life, Mr. McAlpine has gained his practical and field experience through his various significant positions and dedication as the QA/QC Manager, Site QA Manager, Senior Welding Engineer, Material Engineer/Welding Specialist, Lead QC Welding Engineer, Lead Welding Engineer, Welding Engineer, Welding/Operations Engineer, SME Project Welding Engineer, Project Welding Engineer, Site Welding Engineer, Site Quality Surveillance Engineer, Multi-coded Welder and Senior Instructor/Trainer from the MWSpecialists Ltd., UK, Aker Solutions, UK, WSP, Quality & Inspection Services Ltd., UK, Saipem Intermare Sarda Yard, Arbatrax, Sardinia, Italy, KSM Zeman Ltd., UK, New Build "Energy from Waste", UK, ISKER Consortium, Republic of Kazakhstan (RoK) - Offshore Caspian Sea Ad-Hoc, Hinkley Power Station (HPC), Somerset, UK, Denholm Zholdas, Wood Group PSN KazStroy, North Caspian Operating Company N.V. (NCOC), AGIP KCO, Cimolai Yard, Italy, BP, Chevron, ConocoPhillips, Eni, Equinor, ExxonMobil, Petrobras, Petronas, Saudi Aramco, Shell, Total and Energies & Woodside Energy.

Mr. McAlpine has a Higher National Diploma (HND) in Manufacturing Engineering and a Diploma in Welding Technology from The Welding Institute (TWI). Further, he is a Certified Welding Inspector from the Certification Scheme for Welding Inspection Personnel (CSWIP), a Certified International Welding Technologist from the International Institute of Welding (IIW), a Certified European Welding Technologist from the European Federation for Welding, Joining & Cutting (EWF) and a Certified European Engineer (Eur Ing) from the European Federation of National Engineering Associations (FEANI). Moreover, he holds a Certificate in Welding Engineering (CWE), a Chartered Engineer of the Engineering Council, UK and a Member of The Welding Institute, UK and has further delivered numerous trainings, courses, seminars, conferences and workshops internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 26th of February 2024

Monday, 26" of February 2024
Registration & Coffee
Welcome & Introduction
PRE-TEST
Part 1 - Basic Sciences Fundamentals: Mathematics
Simple Calculations (Multiple Choice) • Special Functions (Exp, Log) •
Trigonometric Functions (Sin, Cos, Tan, Cot, Sec, Csc, Degrees, Radians) •
Algebraic Equations (Linear, Quadratic, Polynomial)
Break
Part 1 - Basic Sciences Fundamentals: Mathematics (cont'd)
Graphs & Equations (Slope, Intercept, Roots, Derivatives, Minimum, Maximum,
Interpolation & Extrapolation) • Geometry (Common Geometric Shapes)
Lunch
Part 1 - Basic Sciences Fundamentals: Mathematics (cont'd)
Hyperbola & Parabola • Complex Numbers • Calculus (Fundamentals of
Differential Equations)
Break
Part 1 - Basic Sciences Fundamentals: Mathematics (cont'd)
Statistics (Population & Samples: Normal Distribution, Mean, Standard
Deviation, Variance • Simple Correlation: Linear Regression Via Least Squares
<i>Method, r</i> ² <i>Correlation)</i>
Distribute Homework & Recap
End of Day One

Day 2: Tuesday, 27th of February 2024

Day 2:	Tuesday, 27" of February 2024
0730 - 0830	Homework Review
0830 – 1000	Part 1 - Basic Sciences Fundamentals: Physics
	Unit Conversion (Dimension, Mass, Temperature, Time, Energy, Power) •
	Mass, Weight, Volume, Density; Force, Energy, Work Done & Power • Stress,
	Strain & Hooke's Law (Elasticity)
1000 - 1015	Break
1015 – 1200	Part 1 - Basic Sciences Fundamentals: Physics (cont'd)
	Moment & Momentum • Temperature, Heat, Temperature Measurement,
	Thermocouples & Pyrometers • Thermal Properties of Materials (Thermal
	Conductivity, Thermal Expansion, Thermal Stress & Strain)
1200 - 1300	Lunch
	Part 1 - Basic Sciences Fundamentals: Chemistry
1300 – 1500	Symbols (Elements & Inorganic Compounds – Gases, Fluxes, Etc.) • Molecular
	Weight & Stoichiometry • Acids & Bases • Balance Chemical Equations • Gas
	Combustion Reactions (Chemical Heat Generation) & Oxidation-Reduction
	Reactions

1500 - 1515	Break
	Part 1 - Basic Sciences Fundamentals: Chemistry (cont'd)
1515 – 1630	Ideal Gas Law (Pressure, Volume, Temperature) • Mass Balance (As in E7018
	Coating Decomposition to Gas, Slag & Metal) • Bulk & Chemical Analysis
	Methodologies) • Reactivity, Toxicity, Environmental Effect & Disposal
1630 - 1730	Distribute Homework & Recap
1730	End of Day Two

Day 3: Wednesday, 28th of February 2024

Day 3:	wednesday, 28" of February 2024
0730 - 0830	Homework Review
0830 - 1000	Part 2 - Applied Sciences Fundamentals: Strength of Materials
	Load, Deformation (Elastic & Plastic, Buckling), Stress-Strain, Young's
0030 - 1000	Modulus, Shear Modulus, Stress-Strain Curve (Yield Stress, Ultimate Tensile
	Stress, Elongation), Tensile Stress & Shear Stress Computation
1000 - 1015	Break
	Part 2 - Applied Sciences Fundamentals: Strength of Materials (cont'd)
1015 – 1200	Welded Member Cross-Section Effect • Mechanical Testing (Tensile, Bend,
	Fracture Toughness, Hardness, Creep & Fatigue) & Data Interpretation
1200 - 1300	Lunch
1300 – 1500	Part 2 - Applied Sciences Fundamentals: Strength of Materials (cont'd)
	Law of Conservation of Energy/Momentum • Stress Analysis
1500 - 1515	Break
1515 – 1630	Part 2 - Applied Sciences Fundamentals: Strength of Materials (cont'd)
	Typical Engineering Material Properties
1630 - 1730	Distribute Homework & Recap
1730	End of Day Three

Day 4: Thursday, 29th of February 2024

Duy T.	That Saay, 25 Of February 2024
0730 - 0830	Homework Review
0020 1000	Part 2 - Applied Sciences Fundamentals: Heat Transfer & Fluid
	Mechanics
0830 – 1000	Heat Conduction, Convection & Radiation, Thermal Conductivity & Diffusivity,
	Heat Transfer Coefficients of Engineering Materials, Fourier's Law
1000 - 1015	Break
	Part 2 - Applied Sciences Fundamentals: Heat Transfer & Fluid
1015 1200	Mechanics (cont'd)
1015 – 1200	Heating Rate & Cooling Rate • Industrial Heating Methods, Power
	Consumption, Gas Flow Rates
1200 - 1300	Lunch
1300 – 1500	Part 2 - Applied Sciences Fundamentals: Heat Transfer & Fluid
	Mechanics (cont'd)
	Laminar & Turbulent Flow (Reynold's Number), Dew Point & Relative
	Humidity, Pressure & Regulators • Venturi Effect & Gas Velocity Calculation

1500 - 1515	Break
1515 – 1630	Part 2 - Applied Sciences Fundamentals: Heat Transfer & Fluid Mechanics (cont'd) Atmospheric Pressure & Hyperbaric Conditions • Vacuum Equipment & Measurements
1630 - 1730	Distribute Homework & Recap
1730	End of Day Four

Day 5: Friday, 01st of March 2024

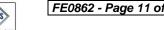
Day 5:	Friday, 01° of March 2024
0730 - 0830	Homework Review
	Part 2 – Applied Sciences Fundamentals: Electricity
0830 - 1000	Current, Voltage, Resistance, Impedance & Circuits • Ohm's Law • Kirchoff's
	Law
1000 - 1015	Break
	Part 2 - Applied Sciences Fundamentals: Electricity (cont'd)
1015 – 1200	Resistance Loss & Current Rectification • Power Generation • AC/DC &
	Polarity
1200 - 1300	Lunch
1200 1500	Part 2 - Applied Sciences Fundamentals: Electricity (cont'd)
1300 – 1500	Power Factor • Electromagnetic Properties
1500 - 1515	Break
1515 - 1645	Part 2 - Applied Sciences Fundamentals: Electricity (cont'd)
	Right-Hand Rule • Current & Voltage Measurements (Devices & Principles)
1645 - 1700	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1700 - 1715	POST-TEST
1715 - 1730	Presentation of Course Certificates
1730	End of Course

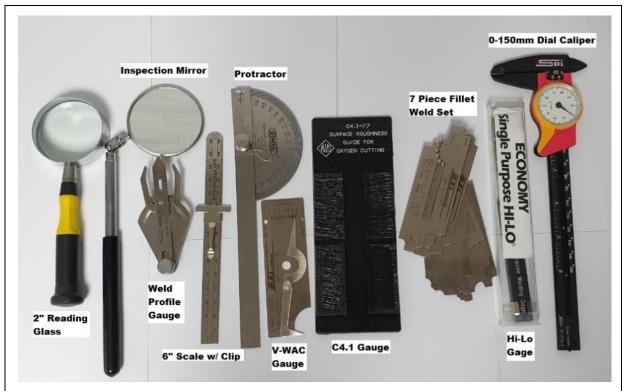
MOCK Exam

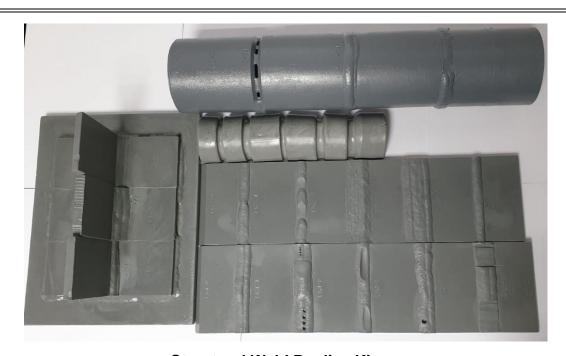
Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each Participant will be given a username and password to log in Haward's Portal for the Mock exam during the 7 days following the course completion. Each participant has only one trial for the MOCK exam within this 7-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.

<u>Simulator (Hands-on Practical Sessions)</u>

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art "E-Welding & Fabrication" and "American Welding Society (AWS) Tool Kit and Structural Weld Replica Kit".







AWS Tool Kit

Structural Weld Replica Kit

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

