

COURSE OVERVIEW RE0020 Effective Reliability Maintenance & Superior Maintenance Strategies

Course Title

Effective Reliability Maintenance & Superior Maintenance Strategies

Course Date/Venue

Session 1: February 11-15, 2024/The Mouna Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE

Session 2: March 03-07, 2024/Oryx Meeting Room, Doubletree By Hilton Doha-Al Sadd, Doha, Qatar

Course Reference

RE0020

Course Duration/Credits

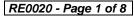
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises participants will be engaged in a series of interactive small groups and class workshops.

The chronic problem that many companies struggle with regarding reliability maintenance is transforming their mindset from being reactive to being predictive. The differences are extreme. Reactive maintenance doesn't address machine problems until production is impaired or machines fail. A next phase is preventive. This mindset involves repairing bearings, belts and machines based on a schedule or machine hours. What this doesn't insure is machine failure causing unplanned downtime and unexpected costs.

The predictive mindset is proactive. It involves collecting and analyzing machinery information on a periodic basis including vibration, ultrasonic and temperature readings. Predictive maintenance addresses and corrects the root causes of machine problems. It promotes reliability. The benefits of predictive maintenance are that it allows a company to plan down-time and repair machinery on a scheduled basis. Also, it identifies which machines and parts need to be repaired and replaced and which do not.



This course presents recent, but proven, developments in reliability maintenance in a practical way enabling delegates to transform maintenance from a cost item to a profit center. In addition to the effective reliability and maintainability, this course will also cover the Asset Management, a concept that emerged in recent years as the total organization of a physical asset's life cycle to achieve the lowest cost with maximum return. As such, it spans an entire organization, beyond maintenance or operations functions. Asset management demands continuous, prioritized improvement through design and procedural change. Success is measured by the contribution to a company's results and shareholder value. Asset management is adapted by a growing number of enterprises as an umbrella for bringing good existing operations, maintenance, procurement, quality, and engineering practices together. Various companies provide the maintenance part of asset management services and solutions by providing assessment and improvement programs. Each offers a different slant and bias, typically derived from the organization's background, culture, and strengths.

Course Objectives

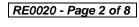
Upon the successful completion of this course, you will be able to:-

- Extend the life of your equipment
- Apply life cycle cost and risk planning to your facility assets
- Lower your overall maintenance costs
- Utilize your manpower more efficiently
- Target maintainability and reliability in the development of your facility maintenance plans
- Save on capital equipment expenditures, learning curves and manpower
- Implement the cycle of continuous improvement
- Reduce machine down time
- Acquire a practical knowledge and understanding of AM (Asset Management), RCM (Reliability Centered Maintenance), TPM (Total Productive Maintenance) and Continuous Improvement (CI) processes

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend


This course provides an overview of all significant aspects and considerations of effective reliability maintenance and superior maintenance strategies for maintenance, reliability, machinery, rotating equipment and plant engineers, planners and other technical staff involved in plant maintenance and reliability.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 30 years of extensive industrial experience. His wide expertise includes Piping & Pipeline, Shutdown. Maintenance. Repair, Turnaround Outages. Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability

Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, **Heat Exchangers**, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master and Bachelor degrees in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of **Phoenix** in USA. Further, he is а Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

Course Fee

Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

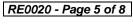
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1


0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Course Overview
0830 - 0930	Course Objectives • Delegate Expectations • Overview • Discussions •
	What Concerns Do You Have About Your Reliability?
0930 - 0945	Break
	Organizing For World Class Operations–Pacesetter Characteristics
0945 - 1100	Steps Toward Pacesetter Performance • Framework for Reliability Excellence
	• Exercise • Pacesetter Elements & Characteristics
	Organizing For World Class Operations -Pacesetter Characteristics
1100 - 1215	(cont'd)
1100 - 1213	Best Reliability Practices • Discussions • Are There Any Other
	Characteristics That Were Missed?
1215 - 1230	Break
	Equipment Failure Patterns
	Distinguishing Between Repairable & Non-Repairable Equipment • Types of
1230 - 1420	Equipment Failure • Review Why Equipment Fails • Areas of The Bath-
	Tub Curve • Actual Equipment Failure Patterns • Actins to Minimize
	Failure Effect ● Discussions ● How Does Most of Your Equipment Fail?
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 - 0930	Maintenance Affect on Reliability
	Today's Maintenance Issues • Different Types of Maintenance • How
	Maintenance Influences Equipment Performance
0930 - 0945	Break
	Maintenance Affect on Reliability (cont'd)
0945 - 1100	Introduction to Condition Based Maintenance • Factors Contributing to
	Excessive Maintenance • Discussions
	Monitoring Techniques
	Types of Condition-Based Monitoring • Vibration Monitoring • Pump
1100 – 1215	Monitoring Frequency • Temperature Based Monitoring • Infrared
1100 - 1213	Monitoring • Lube Oil Analysis • Discussion • Analytical- Base Tools •
	Data Analysis • Weibul Analysis • Discussions • What Kind of Analysis
	is Done?
1215 - 1230	Break
	Total Productive Maintenance
1230 - 1420	TPM Concepts • TPM Goals • TPM Losses • Activities to Achieve TPM
1230 - 1420	• Experience With Autonomous Maintenance • Discussions • Who Are
	The People Doing The Tasks?
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Day 3	
0730 - 0930	Life Cycle Cost Introduction ● Example
0930 - 0945	Break
0945 – 1100	Reliability Centered Maintenance What is RCM ● Approach ● Selecting the Equipment for RCM ● RCM Functional Categories ● The Key Questions for Implementing RCM ● Potential Maintenance Tasks ● Implementation Scheme ● Alternative Method to RCM ● Discussion ● Was it a Successful Program?
1100 – 1215	Reliability Mathematics Understanding Equipment Failure Information • Non-Repairable System Mathematics • Repairable System Mathematics • Series System With Examples • Parallel System With Examples • Combined System Example • Reliability Modeling Problem
1215 - 1230	Break
1230 – 1420	Availability Modeling What is Modeling & Its Benefits • Two Simple Approaches to Modeling • Example • Simulation Modeling • Simulation Example • When to Use What Type of Modeling • Discussion • What Type of Modeling Has Been Used?
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Duy +	
0730 - 0930	Application of R&M Principles to Projects Key Elements of Reliability ● Establish Reliability During Design ● Why Build Reliability Into a Project
0930 - 0945	Break
0945 – 1100	Application of R&M Principles to Projects (cont'd) Work Process for Implementing ● Overall Reliability Goals ● Elements of an R&M Program ● Exercise ● Maintainability

1100 – 1215	Application of R&M Principles to Projects (cont'd)Exercise ● Implementation ● Pros & Cons? ● Discussion ● DoProjects Consider R&M During Design & Engineering?
1215 - 1230	Break
1230 – 1420	Human Reliability What Does It Cost a Plant • Human Error Why & When • Human Reliability • What Causes Unreliability • Experience • Lesson Learned • Design Considerations
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5	
0730 - 0930	Performance Metrics
	Performance Indicator Characteristics • Business Results Indicators •
	Balancing R&M • System Performance Indicators • Maintenance
	Effectiveness Metrics • Equipment Specific Indicators
0930 - 0945	Break
	Performance Metrics (cont'd)
0945 - 1045	Machinery Targets • Heat Exchanger Indicators • Instrument Indicators •
	Discussion • How Frequently are They Being Reported or Tracked?
	Proven Turnaround Practices
1045 - 1215	Success Factors • T/A Concern Areas • Management Practices •
	Milestone Plan ● Work Scope ● Projects
1215 – 1230	Break
	Proven Turnaround Practices (cont'd)
1230 - 1315	Material Procurement • Process Operations • Pre-T/A Reviews •
	Discussion ● Do You Pre-T/A Reviews?
1315 - 1345	Review & Wrap-Up
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

