

COURSE OVERVIEW IE0139-4D Advanced Process Control/Field Device Manager

Course Title

Advanced Process Control/Field Device Manager

Course Reference

IF0139-4D

Course Duration/Credits
Four days/2.4 CEUs/24 PDHs

H-STK©

Course Date/Venue

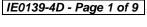
Session(s)	Date	Venue
1	January 15-18, 2024	Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA
2	March 04-07, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
3	June 03-06, 2024	Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	September 02-05, 2024	Boardroom, Warwick Hotel Doha, Doha, Qatar

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This APC/FDM course covers the practical application of Advanced Process Control (APC) or Field Device Manager (FDM) systems to a variety of continuous process plants. The course discuss automation and its importance, types of plants and controls, automation hierarchy, control system architecture, instrumentation and control, different types of computer-based control systems including PLCS and DCS. Basic requirements for good operator interface, industrial interchange, man-machine communication, information communication, enterprise level, engineering commissioning, performance & dependability, dependable control systems, safety & hazard analysis, concepts & implementation of alarm & trip systems, device management protocols and Honeywell field device manager (FDM) will be illustrated during the course.

The course will provide hands-on training sessions in PLC and HMI (OIU and SCADA) programming techniques using one of our state-of-the art Allen Bradley SLC 500, Siemens S7-200, AB Micrologix 1000 (Digital or Analog), AB SLC5/03 and AB WS5610 PLC simulators. Please refer to the last page of this course overview for details of simulators.



Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on advanced process control (APC) or field device manager (FDM)
- Explain automation and its importance and identify the various types of plants and controls
- Describe automation hierarchy, control system architecture and control
- Enumerate the different types of computer-based control systems including PLCs and DCSs as well as the basic requirements for good operator interface
- Determine industrial communication, information interchange and man-machine communication
- Recognize enterprise level, engineering, commissioning, performance and dependability
- Carryout dependable control systems, safety and hazard analysis, concepts and implementation of alarm and trip systems
- Discuss device management protocols and Honeywell field device manager (FDM)

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced process control or field device manager for those who are responsible for the selection and implementation of APC or field device manager systems and other process plant control systems. Personnel in technical positions who want to know more about APC or field device manager systems will also benefit from this course.

Training Methodology

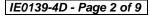
All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos


In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Course Accreditations

Certificates are accredited by the following international accreditation organizations:

• ACCREDITED
PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

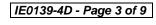
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Mike Tay, PhD, MSc, BSc, is a Senior Electrical, Instrumentation & Communications Engineer with over 40 years of extensive experience. His expertise widely covers Energy Industry, Global Warming, Hydroelectric & Geothermal Power, Biomass & Biogas, Four 'C's of the Energy Transition, Fifth Generation Heat, Protection Relay Maintenance, Application &

Testing, System Analysis, Power System Faults, Protection Scheme Components, Current & Voltage Transformers, Power System Neutral Grounding, Feeder Overcurrent Protection, Electrical Protection Systems, Bus Protection, Motor Protection, Starting & Control, Transformer Protection, Generator Protection, Capacitor Protection, Numerical Relays, SCADA Security, ESD System Analysis & Control, Electrical & Instrumentation, Installation & Inspection, Custody Measurement, Loss Control for Petroleum Products, Process Control & Instrumentation, Fiber Optics Access Network Planning, Safety Instrumented System (SIS), Safety Integrity Level (SIL), PLC Design, Power System, Power Supply Design Management, Basic Electronics & Transformers, Diesel Generator, Electric Motors, Electrical Fundamentals, Basic Electricity and Electrical Codes. Further, he is also well-versed in Communications, Telecommunications, Mobile Protocols, 4G LTE, GSM/UMTS, CMDA2000, WIMAX Technology, HSPA+, Alarm Management System, Computer Architecture, Logic & Microprocessor Design, Embedded Systems Design plus Computer Networking with CISCO, Network Communication, Industrial Digital Communication. Designing Distribution System, **Telecommunications Electrical** Engineering, **WiMAX** Broadband Wireless System, TT Intranet & ADSL Network, TT Web & Voicemail, Offsite ATM Network, IT Maintenance, Say2000i, IP Phone, National Address & ID Automation, Electricity Distribution Network, Customs Network & Maintenance, LAN & WAN Network, UYAP Network, Network Routing Protocols, Multicast Protocols, Network Management Protocols, Mobile & Wireless Networks and Digital Signal Processing. Currently, he is the Technical Advisor of Izmir Altek.

During his career life, Dr. Tay worked with various companies such as the KOC Sistem, Meteksan Sistem, Altek BT, Yasar University, Dokuz Eylul University, METU and occupied significant positions like the Aegean Region Manager, Group Leader, Technical Services Manager, Field Engineer, Research Assistant, Instructor, Technical Advisor and the Dr. Instructor.

Dr. Tay has PhD, Master and Bachelor degrees in Electrical & Electronic Engineering from the Dokuz Eylul University and the Middle East Technical University (METU) respectively. Further, he is a Certified Instructor/Trainer, Technical Trainer (Australia), Trainer for Data-Communication System (England & Canada), a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), a Certified CISCO (CCSP, CCDA, CCNP, CCNA, CCNP) Specialist, a Certified CISCO IP Telephony Design Specialist, CISCO Rich Media Communications Specialist, CISCO Security Solutions & Design Specialist and Information Systems Security (INFOSEC) Professional. He has delivered and presented innumerable training courses and workshops worldwide.

Course Fee

Al Khobar	US\$ 4,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 5,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0900	Automation & Its Importance	
0900 - 0930	Types of Plants & Controls	
0900 - 0930	Continuous Processes ● Discrete Processes ● Mixed Processes	
0930 - 0945	Break	
0945 - 1230	Automation Hierarchy	
1230 - 1245	Break	
1245 - 1420	Control System Architecture	
	Recap	
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day One	

Day 2

0730 – 0930	Instrumentation Binary & Analogue Instruments ● Instrumentation Diagrams ● Measurement Instrumentation for Flow, Level, Temp, Pressure ● Instrument Calibration Concepts ● Final Control Elements (Control Valves,- Actuators, Control Valve Instrumentation)
0930 - 0945	Break
0945 - 1030	Control Plant Modeling • Loop Dynamics • PID Controller • Various Forms of PID Algorithms • Optimal Tuning Theory and Calculations • Transforming Process Operating Information into Controller Tuning • Identifying Process Dynamics based on DCS Trends and Historical Data • Nested Controllers • Impact of Control Valves on Control Loop Performance

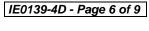
1030 - 1130	Different Types of Computer-Based Control Systems including PLCs & DCSs as well as Basic Requirements for Good Operator Interface
	PLCs Functions & Construction • DCS Attributes & Features • Continuous & Discrete Control • IEC 61131 Languages
1130 - 1230	Industrial Communication Field Bus Principles ● Field Bus Operation ● Physical Layer (Media & Wiring) ● Link Layer (Determinism & Redundancy) ● Application Layer (Shared Memory & Messages Paradigm)
1230 - 1245	Break
1245 – 1420	<i>Information Interchange</i> Device Access Protocols: HART ◆ OPC
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 3		
0730 - 0930	<i>Man-Machine Communication</i> Hardware & Software Structure ● Tools	
0930 - 0945	Break	
0945 - 1030	Enterprise Level Enterprise Resource Planning	
1030 - 1130	Engineering & Commissioning Life Cycle ● Project	
1130 - 1230	Performance & Dependability Real-Time & Performance Evaluation	
1230 – 1245	Break	
1245 – 1420	Dependable Control Systems Dependability, Overview & Definitions ● Dependability Evaluation	
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

zu, .	
0730 - 0930	Safety & Hazard Analysis Fault Tolerance ● Reliability & Safety ● Fault Tolerance
0930 - 0945	Break
0945 - 1100	Concepts & Implementation of Alarm & Trip Systems
1100 - 1230	Device Management Protocols
1230 - 1245	Break
1245 – 1345	Honeywell Field Device Manager (FDM)
1345 – 1400	POST-TEST
1400 - 1415	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", "Siemens S7-400", "Siemens SIMATIC S7-300", "Siemens S7-200", "GE Fanuc Series 90-30 PLC", "Siemens SIMATIC Step 7 Professional Software", "HMI SCADA", "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool", "Orifice Flow Calculator" and "Automation Simulator".

Allen Bradley SLC 500 Simulator

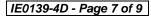
Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC **Simulator PLC5**

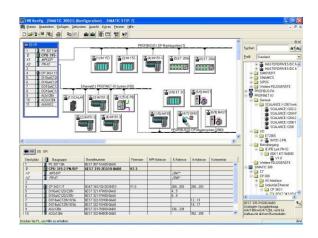
Allen Bradley Micrologix 1000 Simulator (Digital)

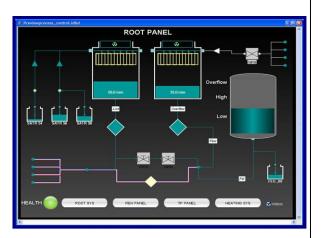
Allen Bradley SLC 5/03

Siemens S7-1200 Simulator



Siemens S7-400 Simulator

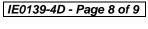

Siemens SIMATIC S7-300

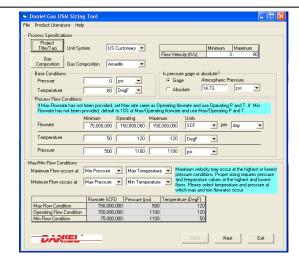

Siemens S7-200 Simulator

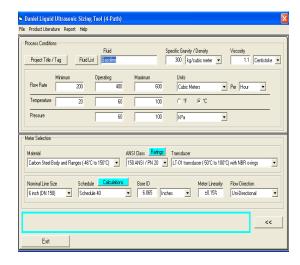
GE Fanuc Series 90-30 PLC Simulator

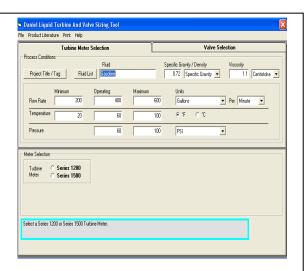
Siemens SIMATIC Step 7 Professional Software

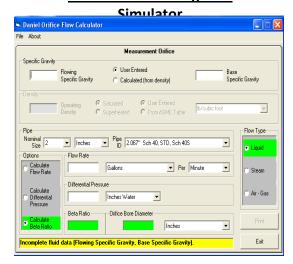
HMI SCADA

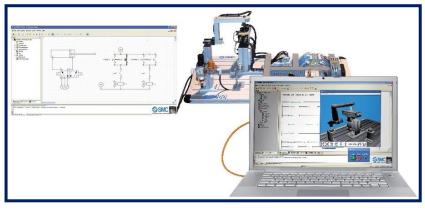









Gas Ultrasonic Meter (USM) Sizing Tool Simulator


Liquid Ultrasonic Meter Sizing Tool Simulator

Liquid Turbine Meter and Control Valve Sizing Tool

Orifice Flow Calculator Simulator

AutoSIM – 200 Automation Simulator

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

