

COURSE OVERVIEW PE0221 Operation of Process Equipment

<u>Fired Heaters, Air Coolers, Heat Exchangers,</u> <u>Pumps, Compressors, Crude Desalter, Pressure Vessels & Valves</u>

Course Title

Operation of Process Equipment: Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Crude Desalter, Pressure Vessels & Valves

Course Reference

PE0221

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Dates	Venue
1	May 05-09, 2024	The Kooh Al Noor Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE
2	August 11-15, 2024	Kizkulesi, Crown Plaza Istanbul Asia Hotels & Convention Center, Istanbul, Turkey
3	December 08-12, 2024	Oryx Meeting Room, Doubletree By Hilton Doha-Al Sadd, Doha, Qatar
4	January 20-24, 2025	Hampstead Meeting Room, London Marriott Hotel Regents Park, London, United Kingdom

Course Description

The course is designed to provide delegates with a detailed and up-to-date overview on the operation of the hydrocarbon process equipment that includes fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves.

It covers the characteristics of crude oil and function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions.

At the completion of the course, participants will be able to apply oil treating; dehydration and desalting; process and equipment operations; and employ the sequence of desalter plant start-up.

The course will also cover the different types and function of direct fired heaters; safety aspects; air coolers; heat exchangers; pumps; compressors; process vessels; valves; and troubleshooting of different equipment and processes.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper techniques and procedures on the operation of the hydrocarbon process equipment such as fired heaters, air coolers, heat exchangers, pumps. compressors, crude desalter, pressure vessels and valves
- Enumerate the characteristics of crude oil and identify the function of chemicals used in the process such as composition of petroleum, hydrocarbon properties, salt concentration and emulsions
- Discuss oil treating, dehydration and desalting including the process and equipment operations
- Employ the sequence of desalter plant start-up and identify the different types and function of direct fired heaters including the safety aspects
- Differentiate the various types of air coolers, heat exchangers, pumps and compressors
- Describe the types and functions of process vessels and valves including the troubleshooting of different equipments and processes

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all operational aspects of the hydrocarbon process equipment for engineers and other technical staff who are involved in the operation and troubleshooting of various process equipment including fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels and valves. The course is also beneficial for design engineers and maintenance staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos


In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, researchbased criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

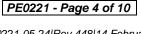
Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is a Senior Engineer with over 30 years of practical experience within the Oil, Gas, Refinery and Petrochemical industries. His wide expertise includes Process Plant Optimization Technology & Continuous Improvement, Process Engineering Calculations, Process Plant Start Up & Commissioning, Applied Process Engineering Elements. Coke Cooler, **Process** Plant Start-up

Commissioning, Process Plant Troubleshooting, Operations Abnormalities & Plant Upset, Process Equipment Applications & Troubleshooting, Process Plant Performance & Efficiency, Gas Sweetening & Sulphur Recovery, Distillation-Column Control & Troubleshooting, Oil Movement & Troubleshooting, Process Plant Operations & Control, Process Equipment Operation, Fired Heaters & Air Coolers Maintenance, Heat Exchangers, Pumps & Compressors, Crude Desalter, Pressure Vessels & Valves, Steam Trapping & Control, Pumps & Valve Maintenance & Troubleshooting, Turbomachinery, Mechanical Alignment, Rotating Equipments, Diesel Generators, Lubrication Technology, Bearing, Predictive & Preventive Maintenance, Root Cause Analysis, Boilers, Oil Field Operation, Production Operation, Plant Operation & Commissioning, Crude Oil De Salting Process, Gas Conditioning, NGL Recovery & NGL Fractionation, Flare System, Storage Tanks, Oil Recovery System and Chemical Injection.

Mr. Thanasis has acquired his thorough and practical experience as the Project Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Sub-contractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.


Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master and Bachelor degrees in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) and a Certified Instructor/Trainer.

Course Fee

Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

In addition to the Course Manual, participants will receive an e-book "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by AuthorHouse.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

<u> </u>		
0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	Characteristics of Crude Oil	
	Composition of Petroleum ● Hydrocarbon Gases Properties	
0930 - 0945	Break	
	Characteristics of Crude Oil (cont'd)	
0945 - 1100	Salts Concentration • Emulsions • Function of Chemicals Used in the	
	Process	
	Oil Treating, Dehydration & Desalting	
1100 1220	Emulsion Formation & Breaking • Vertical & Horizontal Theater Operation	
1100 – 1230	• Electrostatic Theatre Design/Operation • The Desalting	
	Process/Equipment • Emulsion Treating	
1230 - 1245	Break	
1245 – 1420	Oil Treating, Dehydration & Desalting (cont'd)	
	Separators - Free Water Knockout • Hetear Theatres - Other Treating	
	Methods • Chemical – Electrical – Crude Oil Coolers (Heat Exchangers) •	
	Control Valves Principles • Pumps Operation • Air Compressor Operation	
1420 - 1430	Recap	
1430	Lunch & End of Day One	

Day 2

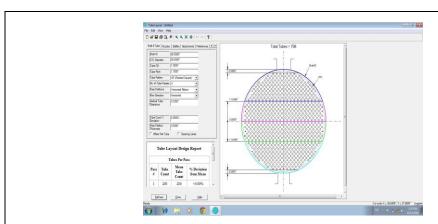
0730 - 0930	Sequence of Desalter Plant Start-up
0930 - 0945	Break
0945 - 1100	Sequence of Desalter Plant Start-up (cont'd)
1100 – 1230	Direct-Fired Heaters
1100 - 1250	Design Considerations – Process & Combustion
1230 - 1245	Break
1245 – 1420	Direct-Fired Heaters (cont'd)
	Control System
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Duy o		
0730 – 0930	<i>Air Coolers</i> Types – Forced and Induced Air • Key Operational Considerations	
0930 - 0945	Break	
0945 - 1100	Air Coolers (cont'd) Air vs Water Cooling ● Troubleshooting	
1100 – 1230	Heat Exchangers Types ● Shell-and-Tube	
1230 - 1245	Break	
1245 – 1420	Heat Exchangers (cont'd) Heat Transfer Relation	
1420 - 1430	Recap	
1430	Lunch & End of Day Three	

Dav 4

Day 4	
0730 – 0930	Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps
	for Efficiency and Control Operation • The Affinity Laws as Tools for
	Efficient Operation • Pump Auxiliaries
0930 - 0945	Break
	Pumps (cont'd)
0945 - 1100	Wear Components • Canned Motor and Magnetic Drive Pumps • High
	Speed/Low Flow Pumps • Servicing and Condition Monitoring
1100 – 1230	Compressors
	Types, Styles and Configurations of Centrifugal and Axial Compressors
	Construction Features • Mode of Operation
1230 - 1245	Break
	Compressors (cont'd)
1245 1420	Compressor Auxiliaries and Support Systems • Analyse Operating Curves
1245 – 1420	for Surge, Stall and Choke • Define Appropriate Equipment for Safe
	Operation
1420 - 1430	Recap
1430	Lunch & End of Day Four



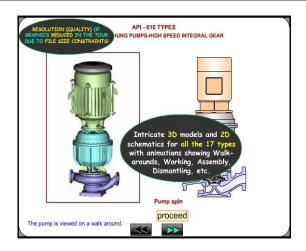
Day 5

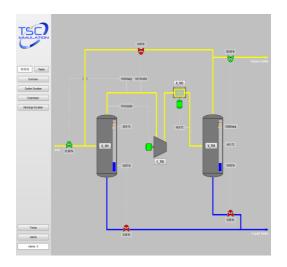
0730 - 0930	Process Vessels Types and Functions ● Safety Aspects	
0930 - 0945	Break	
0945 – 1100	Valves Valve Theory • Valve Types • Applications • Function • Operation • Troubleshooting	
1100 – 1230	Troubleshooting of Different Equipment & Processes	
1230 – 1245	Break	
1245 - 1345	Troubleshooting of Different Equipment & Processes (cont'd)	
1345 – 1400	Course Conclusion	
1400 – 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

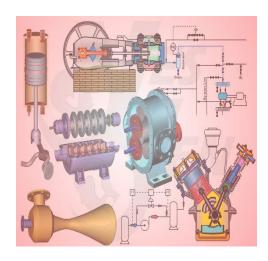
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Heat Exchanger Tube Layout", "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor", "CBT on Compressors", "Valve Sizing Simulator", "Valve Simulator 3.0", "Valvestar 7.2 Simulator", "PRV2SIZE Simulator", and "ASPEN HYSYS" simulator.

Heat Exchanger Tube Layout Simulator

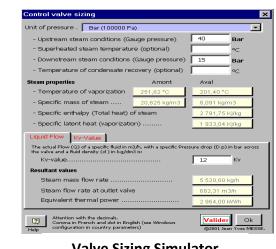


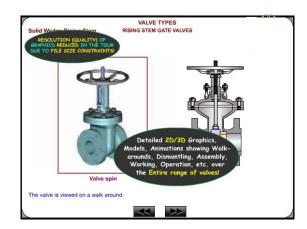


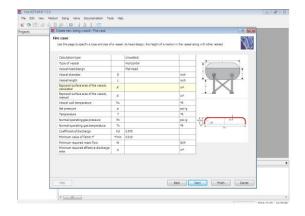


Centrifugal Pumps and Troubleshooting Guide

CBT on Compressors





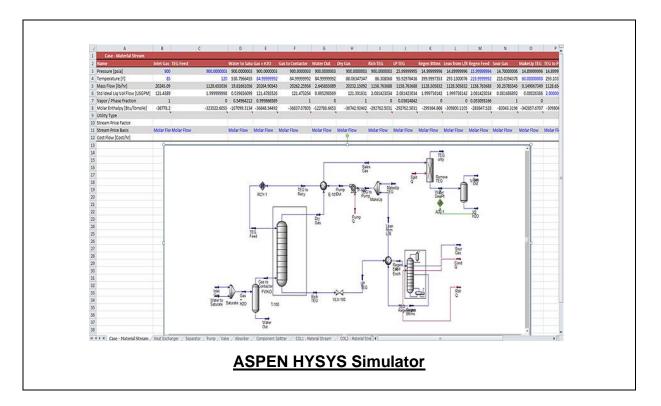


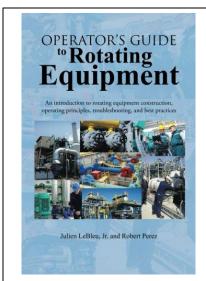
Valve Sizing Simulator

Valve Simulator 3.0

Valvestar 7.2 Simulator

PRV²SIZE Simulator





Book(s)

As part of the course kit, the following e-book will be given to all participants:

Title : Operator's Guide to Rotating Equipment:

An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices

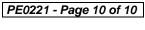
ISBN: 978-1-49690-868-1

Authors: Julien LeBleu

Robert Perez

Publisher: AuthorHouse

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari@haward.org

