

COURSE OVERVIEW EE0085-4D Power System Control & Stability

CEL

Course Title

Power System Control & Stability

Course Reference EE0085-4D

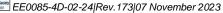
Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	February 12-15, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
2	May 13-16, 2024	Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA
3	August 19-22, 2024	Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	November 18-21, 2024	Boardroom, Warwick Hotel Doha, Doha Qatar

Course Description

BAC


This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

The robustness of a power system is measured by the ability of the system to operate in a state of equilibrium under normal and perturbed conditions. Power system stability deals with the study of the behavior of power systems under conditions such as sudden changes in load or generation or short circuits on transmission lines.

A power system is said to be stable if the interconnected generating units remain in The ability of a power system to synchronism. maintain stability depends to a large extent on the controls available on the system to damp the electromechanical oscillations. Hence, the study and design of controls are very important. Of all the complex phenomena on power systems, power system stability is the most intricate to understand and challenging to analyze. Electric power systems of the 21st century present an even more formidable challenge as they are forced to operate closer to their stability limits.

EE0085-4D - Page 1 of 10

This course is concerned with understanding, modelling, analyzing, and mitigating power system stability and control problems. Such problems constitute very important considerations in the planning, design, and operation of modern power systems.

The complexity of power systems is continually increasing because of the growth in interconnections and use of new technologies. At the same time, financial and regulatory constraints have forced utilities to operate the systems nearly at stability limits. These two factors have created new types of stability problems. Greater reliance is, therefore, being placed on the use of special control aids to enhance system security, facilitate economic design, and provide greater flexibility of system operation. In addition, advances in computer technology, numerical analysis, control theory, and equipment modelling have contributed to the development of improved analytical tools and better system-design procedures. The primary motivation for this course is to describe these new developments and to provide a comprehensive treatment of the subject.

The course is intended to meet the needs of practicing engineers associated with the electric utility industry as well as those of graduate students and researchers. The course will provide the necessary fundamentals, explaining the practical aspects, and giving an integrated treatment of the latest developments in modeling techniques and analytical tools.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on power system control and stability
- Discuss the basic concepts, definitions, classification of stability and historical review of stability problems
- Recognize synchronous machine theory and modeling, physical description and mathematical description of a synchronous machine
- Describe the *dq0* transformation, per unit representation, equivalent circuits for direct and quadrature and steady-state analysis
- Identify electrical transient performance characteristics, magnetic saturation and equations of motion
- Differentiate synchronous machine parameters, operational parameters, standard parameters, frequency-response characteristics and determination of synchronous machine parameters
- Explain synchronous machine representation in stability studies, simplifications essential for large-scale studies, neglect of stator pψ terms and neglecting the effect of speed variations on stator voltages
- Illustrate simplified model with amortisseurs neglected and constant flux linkage model
- Recognize reactive capability limits, AC transmission, transmission lines, transformers, transfer of power between active sources, power flow analysis, power system loads, basic load-modelling concepts, modeling of induction motors, acquisition of loadmodel parameters and excitation systems
- Enumerate the elements and the various types of excitation systems

AWS

• Carryout dynamic performance measures, control and protective functions, excitation systems and field testing for model development and verification

EE0085-4D - Page 2 of 10

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of power system control and stability for electrical managers, engineers, planners, supervisors and other technical staff involved in the stability and control of electrical power systems.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 5,500 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

<u>Course Fee</u>

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE0085-4D - Page 3 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that gualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 2.4 CEUs (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

EE0085-4D - Page 4 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. William Hardi is a Senior Electrical Engineer with almost 35 years of extensive experience within the Oil, Gas, Petrochemical, Refinery & Power industries. His expertise widely covers in the areas of Power System Analysis, Power System Generation and Distribution, Electric Power System Design, Maintenance, Testing & Troubleshooting, Transformer Protection, Transformer Problem and Failure Investigations, Power System Operation and Control,

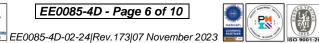
Fault Analysis in Power Systems, HV/MV Cable Splicing, Cable & Over Head Power Line, HV/MV Switchgear, HV Cable Design, Cable Splicing & Termination, High Voltage Electrical Safety, Medium & High Voltage Equipment, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, LV & HV Electrical System, LV, MV & HV Cable Installations & Properties, ORHVS for Responsible and Authorized Person High Voltage Regulation, Transformers Maintenance, inspections & repairs. Commissioning of LV & HV Equipment. Oil Purification and High Voltage Maintenance, HT Switch Gear -Testing, Safe Operating, Maintenance, Inspection & Repairs on LV & HT Cables - Testing (Pulse & Megger), Line Patrol in Low Voltage & Distribution, Transmission, Operating Principles up to 132KV, Abnormal Conditions & Exceptions, Commissioning & Testing, Transformer Inspections & Repairs, Live Line Work up to 33KV, Basic Power System Protection, High Voltage Operating Preparedness Phasing (110V to 132KV), HV Operating & Fault Finding (up to 132KV), Maintenance & Construction Supervision, Line Construction & Maintenance up to 132KV, VSD/VFD Installations & Testing, Electrical Panel Design, VSD/VFD Installations & Testing, Instrument Installation and wiring, Programmable Logic Controller (PLC), PLC for Process Control & Automation, ABB Drives and other PLC Starters, PLC Starters – Commissioning & fault-finding, AC/DC Supplies & Change Over Systems, AC & DC Winders and VLF Testing, Soft Starters – VSD's etc.,

During Mr. Hardi career life, he has gained his practical experience through several significant positions and dedication as the Branch Manager, Maintenance Manager, Site Superintendent, Construction Project Manager, Supervisor, Shift Supervisor, Maintenance & Production Shift Supervisor, HT Specialist, Electrical & Instrumentation Supervisor, High Voltage Specialist & Commissioning Supervisor, Electrical Supervisor, Principal Technical Official, Winder & Conveyor Technician and Instructor/Trainer from various companies, like the Armcoil Africa, JR Compressors, ELGER Electrical, Saaiplaas 3 Shaft, ESCOM and Target Mining.

Mr. Hardi is a **Qualified Electrician** certified by the Engineering Trades Training Board. Further, he is a **Certified Instructor/Trainer** and has delivered various trainings, seminars, conferences, workshops and courses globally.

EE0085-4D - Page 5 of 10 EE0085-4D-02-24|Rev.173|07 November 2023

Course Program


The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0745	Registration & Coffee
0745 - 0800	Welcome & Introduction
0800 - 0815	PRE-TEST
0815 - 0830	Introduction to the Power System Stability Problem
	Basic Concepts & Definitions
0830 - 0900	Power System Stability • Rotor Angle Stability • Synchronous Machine Characteristics • Power Versus Angle Relationship • The Stability Phenomena • Voltage Stability & Voltage Collapse • Mid-Term & Long- Term Stability
0900 - 0915	Break
0915 - 1130	Classification of Stability
1130 - 1200	Historical Review of Stability Problems
1200 - 1230	Synchronous Machine Theory & Modelling
1230 - 1245	Break
1245 - 1300	Physical DescriptionArmature & Field Structure • Machines with Multiple Pole Pairs • MMFWaveforms • Rotating Magnetic Field • Direct & Quadrature Axes
1300 – 1330	Mathematical Description of a Synchronous MachineReview of Magnetic Circuit Equations Single Excited Circuit • CoupledCircuits • Basic Equations of a Synchronous Machine • Stator CircuitEquations • Stator Self-Inductances • Stator Mutual Inductances •Mutual Inductance Between Stator & Rotor Windings • Rotor CircuitEquations
1330 - 1345	The dq0 transformationStator Flux Linkages in dq0 Components• Rotor Flux Linkages in dq0Components• Stator Voltage Equations in dq0 Components• ElectricalPower & Torque• Physical Interpretation of dq0 Transformation
1345 - 1410	Per Unit RepresentationPer Unit System for the Stator QuantitiesPer Unit Stator Voltage EquationsPer Unit Rotor Voltage EquationsStator Flux Linkage EquationsLinkage EquationsPer Unit System for the RotorPer Unit EquationsComplete Set of Electrical Equations in Per UnitPer Unit Reactances
1410 - 1420	Equivalent Circuits for Direct & Quadrature Axes
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One
L	

AWS

EE0085-4D - Page 6 of 10

iosh

0915 - 1000Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from VR2 in English Units • Typical Values of H • Representation in System Studies1000 - 1100Synchronous Machine Parameters1000 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters 0 Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	Day 2	
0730 - 0800 Representation Rotor Angle Procedure for Computing Steady-State Values 0800 - 0830 Electrical Transient Performance Characteristics Short-circuit Current in a Simple RL Circuit Three-phase Short-circuit at the Terminals of a Synchronous Machine 0830 - 0900 Magnetic Saturation Ocoffset in Short-Circuit Characteristics Representation of Saturation of Decoffset in Short-Circuit Current 0830 - 0900 Open-circuit & Short-circuit Characteristics Representation of Saturation of Saturation of Saturation in Stability Studies Improved Modelling of Saturation Use of Potier Reactance 0900 - 0915 Break Equations of Motion Swing Equation Per Unit Moment of Inertia of Motion of Inertia Constant 0915 - 1000 Review of Mechanical Starting Time Calculation of Inertia Constant Calculation of H from Moment of Inertia in MKS Units Calculation of H from WR2 in English Units 1000 - 1100 Synchronous Machine Parameters 1100 - 1230 Operational Parameters 1245 - 1315 Break 1315 - 1330 Frequency-response Characteristics Armature Time Constant 1330 - 1400 Determination of Synchronous Machine Parameters 1330 - 1400 Standastill Frequency Response (SSFR), Open-Circuit Frequency		Steady-State Analysis
0800 - 0830 Short-circuit Current in a Simple RL Circuit • Three-phase Short-circuit at the Terminals of a Synchronous Machine • Elimination of DC Offset in Short-Circuit Current 0830 - 0900 Magnetic Saturation 0830 - 0900 Open-circuit & Short-circuit Characteristics • Representation of Saturation in Stability Studies • Improved Modelling of Saturation • Use of Potier Reactance 0900 - 0915 Break Equations of Motion Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR ² in English Units • Typical Values of H • Representation in System Studies 1000 - 1100 Synchronous Machine Parameters 1100 - 1230 Operational Parameters 1245 - 1315 Break 1315 - 1330 Frequency-response Characteristics Armature Time Constant 1330 - 1400 Determination of Synchronous Machine Parameters 1330 - 1400 Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	0730 – 0800	Representation • Rotor Angle • Procedure for Computing Steady-State
0800 - 0830 Short-circuit Current in a Simple RL Circuit • Three-phase Short-circuit at the Terminals of a Synchronous Machine • Elimination of DC Offset in Short-Circuit Current 0830 - 0900 Magnetic Saturation 0830 - 0900 Open-circuit & Short-circuit Characteristics • Representation of Saturation in Stability Studies • Improved Modelling of Saturation • Use of Potier Reactance 0900 - 0915 Break Equations of Motion Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR ² in English Units • Typical Values of H • Representation in System Studies 1000 - 1100 Synchronous Machine Parameters 1100 - 1230 Operational Parameters 1245 - 1315 Break 1315 - 1330 Frequency-response Characteristics Armature Time Constant 1330 - 1400 Determination of Synchronous Machine Parameters 1330 - 1400 Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency		Electrical Transient Performance Characteristics
0830 - 0900Open-circuit & Short-circuit Characteristics • Representation of Saturation in Stability Studies • Improved Modelling of Saturation • Use of Potier Reactance0900 - 0915Break0915 - 1000Equations of Motion Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR2 in English Units • Typical Values of H • Representation in System Studies1000 - 1100Synchronous Machine Parameters1100 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	0800 - 0830	Short-circuit Current in a Simple RL Circuit • Three-phase Short-circuit at the Terminals of a Synchronous Machine • Elimination of DC Offset in Short-Circuit
0830 - 0900Open-circuit & Short-circuit Characteristics • Representation of Saturation in Stability Studies • Improved Modelling of Saturation • Use of Potier Reactance0900 - 0915Break0915 - 1000Equations of Motion Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR2 in English Units • Typical Values of H • Representation in System Studies1000 - 1100Synchronous Machine Parameters1100 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency		Magnetic Saturation
0915 - 1000Equations of Motion Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR2 in English Units • Typical Values of H • Representation in System Studies1000 - 1100Synchronous Machine Parameters1000 - 1230Operational Parameters1230 - 1245Break1245 - 1315Break1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	0830 - 0900	<i>Open-circuit & Short-circuit Characteristics</i> • <i>Representation of Saturation in Stability Studies</i> • <i>Improved Modelling of Saturation</i> • Use of Potier
0915 - 1000Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR2 in English Units • Typical Values of H • Representation in System Studies1000 - 1100Synchronous Machine Parameters1000 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	0900 - 0915	Break
1000 - 1100Synchronous Machine Parameters1100 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	0915 – 1000	Review of Mechanics of Motion • Swing Equation • Per Unit Moment of Inertia • Mechanical Starting Time • Calculation of Inertia Constant • Calculation of H from Moment of Inertia in MKS Units • Calculation of H from WR ² in English Units • Typical Values of H • Representation in
1100 - 1230Operational Parameters1230 - 1245Break1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1330 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response (SSFR), Open-Circuit Frequency	1000 - 1100	5
1245 - 1315Standard Parameters Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time Constant1310 - 1400Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response (SSFR), Open-Circuit Frequency	1100 – 1230	0
1245 - 1315Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient Pole Machines • Typical Values of Standard Parameters1315 - 1330Frequency-response Characteristics Armature Time ConstantDetermination of Synchronous Machine ParametersEnhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	1230 - 1245	Break
1315 – 1330 Frequency-response Characteristics Armature Time Constant Armature Time Constant Determination of Synchronous Machine Parameters Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response 1330 – 1400 Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency	1245 - 1315	Parameters Based on Classical Definitions • Accurate Expressions for Standard Parameters • Parameters Including Unequal Mutual Effects • Parameters of Salient
Enhanced Short-Circuit TestsDecrement TestsFrequency-Response1330 – 1400Tests(Standstill Frequency Response(SSFR), Open-Circuit Frequency	1315 – 1330	Frequency-response Characteristics
Machine Parameters from Design Data	1330 - 1400	Enhanced Short-Circuit Tests • Decrement Tests • Frequency-Response Tests (Standstill Frequency Response (SSFR), Open-Circuit Frequency Response (OCFR), On-Line Frequency Response (OLFR)) • Calculation of
1400 – 1410 Synchronous Machine Representation in Stability Studies	1400 - 1410	
1410 – 1420 Simplifications Essential for Large-scale Studies	1410 – 1420	
1420 – 1430 <i>Recap</i> Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow		Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be
1430 Lunch & End of Day Two	14.30	

Dav 3

Day 5	
0730 - 0800	Neglect of Stator Py Terms
0800 - 0830	Neglecting the Effect of Speed Variations on Stator Voltages Relationship between Per Unit Pe & Te
0830 - 0900	<i>Simplified Model with Amortisseurs Neglected</i> <i>Alternative form of Machine Equations</i> • <i>Phasor Diagram for Transient</i> <i>Conditions</i>
0900 - 0915	Break

AWS

EE0085-4D - Page 7 of 10

	Constant Flux Linkage Model
0915 - 1015	Classical Model • Constant Flux Linkage Model Including the Effects of
	Subtransient Circuits • Summary of Simple Models for Different Time Frames
	Reactive Capability Limits
1015 - 1115	Reactive Capability Curves • Armature Current Limit • Field Current Limit •
	End Region Heating Limit • V Curves and Compounding Curves
1115 – 1215	AC Transmission
1215 - 1230	Break
	Transmission Lines
	Electrical Characteristics (Overhead Lines, Underground Cables) • Performance
	Equations • Natural or Surge Impedance Loading • Equivalent Circuit of a
	<i>Transmission Line</i> • <i>Nominal</i> π <i>Equivalent Circuit</i> • <i>Classification of Line Length</i>
	• Typical Parameters (Overhead Lines, Underground Cables) • Performance
1230 - 1315	Requirements of Power Transmission Lines • Voltage & Current Profile Under No-
	Load (Receiving End Open-Circuited, Line Connected to Sources at both Ends) •
	Voltage-Power Characteristics [4,10] (Radial Line with Fixed Sending End Voltage,
	Line Connected to Sources at Both Ends) • Power Transfer & Stability Considerations • Reactive Power Requirements • Effect of Line Loss On V-P and Q-
	P Characteristics • Thermal Limits • Loadability Characteristics • Effect of Using
	Bundled Conductors
	Transformers
	Representation of Two-Winding Transformers (Basic Equivalent Circuit in
	Physical Units, Per Unit Equivalent Circuit, Standard Equivalent Circuit,
	Equivalent π Circuit Representation, Consideration of Three-Phase
1315 – 1330	Transformer Connections) • Example of Modelling Two-Winding
1010 1000	Transformers • Representation of Three-Winding Transformers (Example of
	Modelling Three-Winding Transformers) • ULTC Data • H-L Branch •
	L-T Branch • Phase-Shifting Transformers (Example of Modelling a Phase-
	Shifting Transformer)
1330 -1345	Transfer of Power Between Active Sources
	Power-Flow Analysis
	Bus Classification • Representation of Network Elements • Network Equations •
	Nonlinear Power-Flow Equations • Gauss-Seidel Method • Newton-Raphson (N-
1345 -1400	R) Method • Application of the N-R Method to Power-Flow Solution • Sensitivity
	Analysis Using the Jacobian \bullet Fast Decoupled Load-Flow (FDLF) Methods \bullet
	Comparison of the Power-Flow Solution Methods • Sparsity-Oriented Triangular
1400 1400	Factorization • Network Reduction
1400 - 1420	Power System Loads
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 4

0730 - 0800	Basic Load-modelling Concepts Static Load Models • Dynamic Load Models • Thermostatically Controlled Loads • Discharge Lighting Loads
0800 - 0830	Modelling of Induction MotorsEquations of an Induction Machine • Basic Equations of an Induction Machine •The d-q Transformation • Basic Machine Equations in d-q Reference Frame •Electrical Power & Torque • Acceleration Equation • Steady-state Characteristics• Equivalent Circuit • Torque-slip Characteristic • Effect of Rotor Resistance onEfficiency • Alternative Rotor Constructions • Representation of Saturation • PerUnit Representation • Representation in Stability Studies • Simplified InductionMachine Model • Induction Motor Parameters

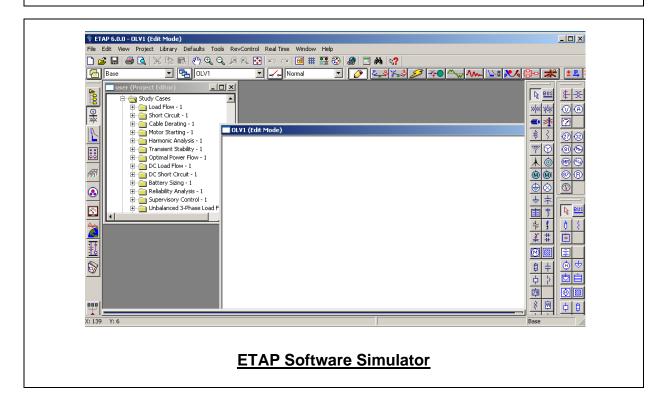
EE0085-4D - Page 8 of 10

EE0085-4D-02-24|Rev.173|07 November 2023

0830 – 0845	Acquisition of Load-Model Parameters Two Basic Approaches to the Determination of System-Load Characteristics (Measurement-based Approach, Component-based Approach) • Measurement-Based Approach • Steady State Load-Frequency Characteristics • Dynamic Load-Voltage Characteristics • Component-Based Approach • Sample Load Characteristics (Component Static Characteristics, Load Class Static Characteristics, Dynamic Characteristics)
0845 - 0900	<i>Excitation Systems</i> <i>Generator Considerations</i> • <i>Power System Considerations</i>
0900 - 0915	Break
0915 – 1000	Elements of an Excitation SystemExciter • Regulator • Terminal Voltage Transducer & Load Compensator• Power System Stabilizer • Limiters and Protective Circuits
1000 - 1100	Types of Excitation SystemsDC Excitation SystemsAC Excitation Systems (Stationary RectifierSystems, Rotating Rectifier Systems (Potential-Source Controlled-RectifierSystems, Compound-Source Rectifier Systems, Compound-Controlled RectifierExcitation Systems))Field Flashing for Static ExcitersDevelopments & Future Trend
1100 - 1230	Dynamic Performance Measures Large-Signal Performance Measures (Excitation System Ceiling Voltage, Excitation System Ceiling Current, Excitation System Voltage Time Response, Excitation System Voltage Response Time, High Initial, Response Excitation System, Excitation System Nominal Response) • Small-Signal Performance Measures
1230 - 1245	Break
1245 – 1300	Control & Protective FunctionsAC & DC RegulatorsExcitation System Stabilizing CircuitsPowerSystem Stabilizer (PSS)Load CompensationUnderexcitationLimiterOverexcitation LimiterVolts-Per-Hertz Limiter and ProtectionField-Shorting Circuits
1300 -1330	Modelling of Excitation SystemsPer Unit System • Specification of Temperature • Modelling of ExcitationSystem Components (Separately Excited DC Exciter, Self-Excited DC Exciter, AC Exciters & Rectifiers, Amplifiers, Excitation System Stabilizing Circuit, Windup & Non-Windup Limits, Gating Functions, Terminal Voltage Transducer & Load Compensator, Modelling of Complete Excitation Systems)• Type AC4A Exciter Model • Type ST1A Exciter Model • Type ST2A Exciter Model • Modelling Of Limiters • Underexcitation Limiter (V/Hz Limiter, Field-Current or Overexcitation Limiter)
1330 - 1345	Field Testing for Model Development & Verification
1345 - 1400	<i>Course Conclusion</i> Using This Course Overview, The Instructor(S) Will Brief Participants About the Course Topics That Were Covered During the Course
1400 - 1415	Using This Course Overview, The Instructor(S) Will Brief Participants About the Course Topics That Were Covered During the Course POST-TEST
	<i>Using This Course Overview, The Instructor(S) Will Brief Participants About the Course Topics That Were Covered During the Course</i>

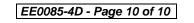
AWS

EE0085-4D - Page 9 of 10



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Power World" and "ETAP software".


	t Edit Mode Run Mode Log Single Solution
吉 🍄 🌦 🚟 🇱 柑 鞋 ម 🛛 🔍 [100	
函圖圖 林然口品與說田氏	
A Display: NewOne3.pwd	Substation Name Unassigned Buses Find By Name
	Substation ID Find By Sub ID
>	Substation Buses: No Buses Link to New Object
	Bus Number Bus Name Bus kV Area Number Area Name Zone Number Zone N
0	None None
·e	
URL.	
LINK	
7 4	
(m)	× 🗆 🔹
En	Move Bus(s) to Different Substation
3	Destination Sub Number Name
Ţ	10
塗	Move Selected Bus(s) to Destination Substation
[-a-]	✓ QK Save X Cancel ? Help
至	
Edit Mode X = 5.76 Y = 90.89	

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

1

EE0085-4D-02-24|Rev.173|07 November 2023