

COURSE OVERVIEW PE0910 Refinery Production Operations & Petroleum Products

Course Title

Refinery Production Operations & Petroleum Products

Course Date/Venue

March 03-07, 2024/Meeting Point 3, Four Points by Sheraton Sheikh Zayed Road Hotel, Dubai Trade Centre 1, Dubai, UAE

CEUS

(30 PDHs)

Course Reference PE0910

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

The demand for petroleum products is increasing throughout the world. Traditional markets such as North America and Europe are experiencing moderate increase in demand, whereas the other emerging markets are witnessing a rapid surge. This has resulted in a squeeze on existing refineries, prompting a fresh technological approach to optimize efficiency and throughput. Major oil companies and technology suppliers/licensors are investing heavily to revamp their refining technologies in an effort to cater to the growing needs of customers.

Even though the nature of crude oil is changing, refineries are here to stay in the foreseeable future, since petroleum products satisfy wide-ranging energy requirements/demands that are not fully catered to by natural gas, liquefied petroleum gas (LPG), or coal. eager adapt Refineries are to to changing circumstances and are amenable to trying new technologies that are radically different in character. This is evident from the increasing use of different types of refinery process technology and novel separation methods.

PE0910 - Page 1 of 8

PE0910-03-24|Rev. 163|28 February 2024

This course will give an up-to-date overview of most of the refinery production technologies employed by refineries around the world and it is designed provide an extensive and deep knowledge as well as the description of the technology. Further, this course will guide the participants to develop key concepts and techniques to operate, select and optimize refinery processes.

The course covers a wide range of topics such general chemistry, organic, chemical used in refinery processes, refinery infrastructure, refinery feedstocks, crude distillation, catalytic thermal processes, catalytic cracking, hydrocracking, coking & hydroprocessing & resid processing, hydrotreating, catalytic reforming & isomerization, alkylation & polymerization, product blending, supporting processes, lubricating oil blending stocks, petrochemical feedstocks, additives production from refinery feedstocks, maintenance & safety and environmental considerations

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques and procedures on refinery production operations and petroleum products
- Analyze the usage, optimization, hazards & preventions, storage and specifications of chemicals used in the refinery process
- Discuss refinery infrastructure and refinery products
- Enumerate refinery feedstocks and illustrate the types of crude distillation, crude products, types & properties of coking & thermal processes
- Carryout types and new designs of catalytic cracking, catalytic hydrocracking, feed pretreating, process variables, heat recovery, hydroprocessing and resid processing
- Employ hydrotreating catalyst as well as catalytic reforming and isomerization yields
- Demonstrate alkylation types, process variables, feedstocks and reactions along with product blending and supporting processes
- Determine lubricating oil blending stocks & processes and discuss petrochemical feedstocks, types of production and additives production from refinery feedstocks

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of refinery production operations and petroleum products for all engineering and operations staff. Further, the course is suitable for maintenance, facility integrity, pipelines/piping, quality, Health, Safety and Environmental personnel who are seeking to improve their knowledge and skills on refinery processes and gain exposure on refinery concepts and technology including the operation, safety and control aspects.

PE0910 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0910 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Basem Al-Qarout is a Senior Process & Chemical Engineer with over 35 years of extensive teaching and field industrial experience. His expertise covers Petroleum Refinery Processing, Refinery Material Balance, Refinery SRU, Refinery Operational Economics, Refinery Induction & Optimization, Troubleshooting Refinery Operations & Processes, Refinery Section Supervision, Crude Oil & Refinery Products, Operations & Petroleum Products, Fundamentals of Process

Operations, Hydrocarbon Processing, Process Plant Start-Up & Commissioning, Sampling & Feed/Product Quality, Process Troubleshooting & Problem Solving, Separation of Oil/Gas/Water, Oil Field Operations, Gas Field Operations, Oil Production, Gas Processing, Process Equipment Design, Operation of Process Equipment, Hydro-Treating, Hydro-Forming, Hydro-Cracking and Catalyst Technology. Furthermore, he is also well-versed in P&ID and Wiring Schematics Rotating Equipment-Machinery (Pumps, Compressors, Turbines, Fans & Blowers, Electric Motors, Gears & Transmission Equipment), Static Equipment-Stationary, (Heat Exchangers, Distillation Column, How Trays Work, Process Heaters/Furnaces, Reboilers, Condensers, Piping System, Control & Instrumentation (Process Valves) and Process Control, Instrumentation, Control Valves).

During Mr. Al-Qarout's career life, he has handled challenging positions wherein he has acquired his thorough practical and academic experience as the **Technical Instructor**, Senior **Production Foreman**, **Panel Operator** at **Hydro Cracking Plant** and **Plant Foreman** of various companies such as **Mellitah Oil and Gas B.V.**, **KNPC**, **Chevron**, **Jordan Refinery Company** and **Libya Oil Center**.

Mr. Al-Qarout has a **Diploma** in **Chemical Engineering** from the **Polytechnic University** in **Jordan**. Further, he is **Certified** by **City & Guilds** as **Level 2 & 3 NVQ Processing Operations: Hydrocarbons Assessor** and a **Certified Instructor** by **Haward Technology Train-the-Trainer Program**.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

PE0910 - Page 4 of 8

PE0910-03-24|Rev. 163|28 February 2024

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 03 rd of March 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Industry Background
0930 - 0945	Break
0945 - 1100	<i>General Chemistry</i> Basic Material • Basic Chemical Reaction • Theory of Gases
1100 - 1215	Organic Chemistry Structure of Organic Compounds • Reaction of Organic Compounds • Detail Study of Alkenes • Alkenes • Aromatics & Alcohol • Nitrogen Compounds
1215 – 1230	Break
1230 – 1330	<i>Chemical Used in Refinery Processes</i> Nature of Chemical • Optimization Usage • Chemical Hazards and Prevention • Safe Storage of the Chemicals • Petroleum Product Specification and Testing
1330 – 1420	Refinery InfrastructureRefinery ProductsCharacteristics of Crude and ProductsProductSpecifications and TestsLow-Boiling ProductsGasolineGasolineSpecificationsDistillate FuelsJet and Turbine FuelsAutomotive DieselFuelsRailroad Diesel FuelsHeating OilsResidual Fuel Oils
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 04 th of March 2024
0730 - 0930	Refinery Feedstocks Crude Oil Properties • Crudes Suitable for Asphalt Manufacture • Crude Distillation Curves
0930 - 0945	Break
0945 – 1030	Crude DistillationDesalting Crude Oils• Atmospheric Topping Unit• Vacuum DistillationAuxiliary Equipment• CDU Overhead Condenser Control• Crude DistillationUnit Products
1030 – 1100	Case Study Problem # 1 Crude Units
1100 – 1215	Coking & Thermal ProcessesTypes , Properties & Uses of Petroleum CokeProcess Description-DelayedCokingOperation-Delayed CokingProcess Description-FlexicokingProcess Description-Fluid CokingYields from Flexicoking & Fluid CokingCapital Cost & Utilities for Flexicoking& Fluid CokingVisbreaking
1215 - 1230	Break

PE0910 - Page 5 of 8

1230 - 1420	Case Study Problem # 2 Delayed Coker
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 05 th of March 2024
0730 – 0830	Catalytic CrackingFluidized-Bed Catalytic CrackingNew Designs for Fluidized-Bed CatalyticCracking UnitsCracking ReactionsCracking of ParaffinsOlefinCrackingCracking of Naphthenic HydrocarbonsAromatic HydrocarbonCrackingCracking CatalystsFCC Feed PretreatingProcess VariablesHeat RecoveryYield EstimationCapital & Operating Costs
0830 - 0930	Case Study Problem #3 Catalytic Cracker
0930 - 0945	Break
0945 – 1100	Catalytic HydrocrackingHydrocracking ReactionsFeed PreparationThe Hydrocracking ProcessHydrocracking CatalystProcess VariablesHydrocracking YieldsInvestment & Operating CostsModes of Hydrocracker Operation
1100 – 1130	Case Study Problem #4 Hydrocracker
1130 - 1215	Hydroprocessing & Resid ProcessingComposition of Vacuum Tower BottomsProcessing OptionsHydroprocessingExpanded-Bed Hydrocracking ProcessHydroprocessorsSolvent ExtractionSolvent ExtractionSummary of Resid ProcessingOperations
1215 - 1230	Break
1230 - 1300	HydrotreatingHydrotreating CatalystsNaphtha & Distillate HydrotreatingAromaticsReductionReactionsProcess VariablesConstruction & Operating Costs
1300 - 1330	Case Study Problem #5 Hydrotreaters
1330 - 1400	Catalytic Reforming & IsomerizationPlatforming • Reactions • Feed Preparation • Catalytic Reforming Processes• Reforming Catalyst • Reactor Design • Yields and Costs • Isomerization •Capital & Operating Costs • Penex Processes • Isomerization Yields
1400 – 1420	<i>Case Study Problem #6</i> Naptha Hydrotreater, Catalytic Reformer & Isomerization Unit
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Wednesday, 06th of March 2024 Day 4: Alkylation & Polymerization Alkylation Reactions • Process Variables • Alkylation Feedstocks • Alkylation 0730 - 0830 Products • Catalyst • Hydrofluoric Acid Processes • Sulfuric Acid Alkylation • Comparison of Processes • Alkylation Yields & Cost • Polymerization

PE0910 - Page 6 of 8

0830 - 0930	Case Study Problem # 7
	Alkylation & Polymerization
0020 0045	
0930 - 0945	Break
0945 – 1100	Product Blending
0345 - 1100	<i>Reid Vapor Pressure</i> • <i>Octane Blending</i> • <i>Blending for Other Properties</i>
1100 - 1215	Case Study Problem # 8
	Gasoline Blending
1215 – 1230	Break
1220 1220	Case Study Problem # 9
1230 – 1330	Diesel & Jet Fuel Blending
	Supporting Processes
	Hydrogen Production & Purification • Gas Processing Unit • Acid Gas
1000 1100	Removal • LPG Treating • Merox Processes • DHDS Processes • Sulfur
1330 – 1400	Recovery Processes • SRU Processes • Ecological Considerations in Petroleum
	Refining • Waste Water Treatment • Control of Atmospheric Pollution •
	Noise Level Control
1400 – 1420	Case Study Problem # 10
	Saturated Gas Recovery, Amine & Sulfur Rocovery Units
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four
	······································

Day 5:	Thursday, 07th of March 2024
0730 - 0930	Lubricating Oil Blending StocksLube Oil Processing • Propane Deasphalting •Viscosity Index Improvementand Solvent Extraction • Viscosity Index Improvement & Hydrocracking •Dewaxing • Hydrofinishing •Finishing by Clay Contacting • EnvironmentalImpacts
0930 - 0945	Break
0945 – 1100	Petrochemical FeedstocksAromatics Production • Unsaturate Production • Saturate Paraffins
1100 - 1215	Additives Production From Refinery FeedstocksUse of Alcohols & Ethers • Ether Production Reactions • Ether ProductionProcesses • Yields • Cost of Ether Production • Production of Isobutylene •Commercial Dehydrogenation Processes • Houdry's CATOFIN • PhillipsPetroleum's STAR • UOP LLC's OLEFLEX • Snamprogetti/Yarsintez Process• Costs to Produce Isobutylene from Isobutane • International Union of Pure &Applied Chemists
1215 - 1230	Break
1230 - 1300	Maintenance & Safety
1300 - 1345	Environmental Consideration
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE0910 - Page 7 of 8

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0910 - Page 8 of 8

